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RESUMEN

Desde que M.J.Farrell publicara en 1957 su artículo "The measurement of
productive efficiency", la medición de la eficiencia productiva ha estado intímamente
ligada a la construcción de fronteras de producción. Diferentes técnicas han sido
utilizadas en la literatura económica a tal efecto. Este trabajo presenta una amplia gama
de ellas, tanto parámetricas como no paramétricas. Dichas técnicas son aplicadas a una
muestra de 70 empresas eléctricas norteamericanas. El trabajo analiza igualmente la
robustez de las citadas técnicas, mediante la comparación de los rankings de ineficiencia
derivados de cada una de ellas. Finalmente, del análisis de la estructura productiva y de
la estructura de mercado de las empresas objeto de estudio se derivan una serie de
factores que pueden favorecer la existencia de una mayor o menor ineficiencia
productiva en el sector eléctrico.
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1. INTRODUCTION

Since such authors as Debreu (1951), Koopmans (1951) or Farrell  (1957)

introduced the analysis of efficiency in the economic literature, where has been a

numerous and wide ranging collection of papers and articles devoted to the

measurement of productive efficiency. There has always been a close link between the

measurement of efficiency and the use of frontier functions. Different techniques have

been utilised to either calculate or estimate these efficient frontiers. The aim of this

paper is to provide new insights on their joint use and their application to an industrial

organisation framework.

Most of the papers related to the measurement of productive efficiency have

based their analysis either on parametric or on non-parametric methods. The choice of

estimation method has been an issue of debate, with some researchers preferring the

parametric approach (e.g. Berger, 1993) and others the non-parametric approach (e.g.,

Seiford and Thrall, 1990).  The main disadvantage of non-parametric approaches is their

deterministic nature. Data Envelopment Analysis (DEA), for instance, does not

distinguish between technical inefficiency and statistical noise effects. On the other

hand, parametric frontier functions demand the definition of a specific functional form

for the technology and for the inefficiency error term. The functional form requirement

causes both specification and estimation problems. Obviously, it would be desirable to

introduce more flexibility into the parametric frontiers, as well as more thoroughly

investigate the non-parametric and stochastic methodologies (e.g. Sengupta, 1987). In

our opinion neither approach seems to be strictly preferable. Instead, we think that the

joint use of the two groups of techniques can improve the accuracy with which they

measure productive efficiency. Following recent literature (e.g., Sengupta, 1995), the

main contribution of this paper is to offer some mechanisms and conditions under which

that collaboration can be successful.

The data set utilised is partially taken from the one used in Lee (1995). The

paper of Lee examines the issue of vertical integration in the US electricity industry in

1990. Three stages --generation, transmission, and distribution-- are analysed in his
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study. Our study focuses just on the generation stage and therefore no comparative

analysis with Lee’s study is made.

We organise the paper as follows. Section 2 introduces the techniques used to

measure the productive efficiency. Section 3 presents the data set and discusses the

results. The fourth section concludes the paper.

2. METHODS

2.1. The Parametric Approach

The parametric approach is naturally subdivided into deterministic and

stochastic models. Deterministic models envelope all the observations, identifying the

distance between the observed production and the maximum production, defined by the

frontier and the available technology, as technical inefficiency.  On the other hand,

stochastic approaches permit one to distinguish between technical efficiency and

statistical noise.

The measurement of productive efficiency by means of parametric techniques

requires the specification of a particular frontier function. The Duality theory suggests

the use of cost functions to define the production structure. Nerlove (1963) introduced

the use of cost functions in the analysis of regulated industries with his application to

electric sector. The output produced by firms under a regulated environment, as well as

the prices they pay for factors in competitive markets, can be considered to be

exogenous. This fact makes the choice of cost functions attractive.

Every cost function implies a set of derived demand equations. Christensen and

Greene (1976) argued that the joint use of a cost function and a set of cost share

equations as a multivariate regression system provides better estimates of the production

structure than those derived from single equation procedures. The dual frontier

econometric approach has also evolved from the estimation of single cost functions

(e.g., Greene, 1990) to multiple equation systems (e.g., Ferrier and Lovell, 1990;

Kumbhakar, 1991). However, some serious estimation and specification problems first
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noted by Greene (1980), and Nadiri and Schankerman (1981), still remain unsolved.

This fact has oriented us to the specification of a single production function.1

The technology form adopted was a Cobb-Douglas production function. The

frontier production function finally specified can be represented as
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where i=1,...N indicates the units, Yi is output, Xk,i are inputs. The term vi ui−  is the

composed error term where vi represents randomness (or statistical noise) and ui

represents technical inefficiency. In the deterministic approach vi will equal zero.

Several techniques have been developed in the econometric literature in order to

estimate deterministic frontier models. In Corrected Ordinary Least Squares (COLS)2

methodology, the model’s parameters, except the intercept term, can be consistently

estimated by Ordinary Least Squares (OLS) since that estimation procedure is robust to

non-normality3. If the estimated intercept term is corrected by shifting it upward until

no residual is positive and at least one is zero, we also get a consistent estimator of the

intercept term.

Let us assume the following model:
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1 Panel data techniques can also improve the accuracy of the parametric  approach to the measurement of
productive efficiency. For a detailed comparative analysis of these techniques, see Kumbhakar (1997).
2 Gabrielsen (1975).
3 This was first noted by Richmond (1974).
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and individual technical efficiency will be

Unlike the deterministic approach, the stochastic frontier models4 capture the

effects of exogenous shocks beyond the control of the analysed units. Errors in the

observations and in the measurement of output are also taken into account in this kind

of models.

For the Cobb-Douglas case, the stochastic frontier can be represented by eq. (1).

The error representing statistical noise is assumed to be identical independent and

identically distributed. With respect to the one-sided (inefficiency) error, a number of

distributions have been assumed in the literature, being the most frequently used half-

normal (SFN), truncated from below at zero (SFT) and exponential (SFE). If the two

error terms are assumed independent of each other and of the input variables and some

of the previous distributions is used, then the likelihood functions can be defined and

maximum likelihood estimates can be determined.

Once the model has been estimated by using maximum likelihood techniques,

we obtain a fitted value for the composed error term  v  -  ui i . For efficiency

measurement, we need to separate these two error terms. Jondrow, Lovell, Materov and

Schmidt (1982) proposed one way to do it. They developed an explicit formula for the

expected value of ui conditional on the composed error term (E(ui | vi - ui)) in the half-

normal and exponential cases.

Half-normal case:
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where φ(.) is the density of the standard normal distribution and Φ(.) the cumulative

density function.

                                                       
4 Aigner, Lovell and Schmidt (1977), Meeusen and van den Broeck (1977), and Battese and Corra (1977).
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Exponential case:
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where θ σ= 1
u

.

Truncated case:

Greene (1993) shows that the conditional technical inefficiencies for the

truncated model are obtained by replacing eiλ/σ in the expression for the half-normal

case, with

u
e u
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Finally, individual (conditioned) technical efficiency scores will be

2.2. The Non-parametric Approach

Non-parametric analysis (Charnes, Coopers and Rhodes, 1978) does not require

the specification of any particular functional form to describe the efficient frontier or

envelopment surface. The flexibility of non-parametric techniques allows for several

alternative formulations. In this paper we analyse two versions of an output-oriented

DEA model according to which returns hypothesis is assumed: namely, constant returns

to scale (DEAc) and variable returns to scale (DEAv).

Consider a set of n homogenous Decision Making Units (DMU). There are m

inputs and s outputs and each DMU is characterised by an input-output (X,Y) vector. In

order to determine the efficiency score of each unit, these will be compared with a peer

group consisting of a linear combination of efficient DMUs. For each unit not located

[ ]ii euE
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on the efficient frontier we define a vector µ µ µ= ( , . . . , )1 n  where each µj represents the

weight of each DMU within that peer group. The DEA calculations are designed to

maximise the relative efficiency score of each unit, subject to the constraint that the set

of weights obtained in this manner for each DMU must also be feasible for all the others

included in the sample. That efficiency score can be calculated by means of the

following mathematical programming formulation where technical efficiency scores

will be determined by the optimum ψ. Constant (TEc) and variable returns to scale

(TEv) formulations are described.
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DEA can also be used to calculate scale efficiency. Total technical efficiency is

defined5 in terms of equiproportional increases in outputs that the firm could achieve

while consuming the same quantities of its inputs if it were to operate on the constant

returns to scale (CRS) production frontier. Pure technical efficiency measures the

increase in outputs that the firm could achieve if it were to use the variable returns to

scale (VRS) technology. Finally, scale efficiency would be calculated as the ratio of

total technical efficiency to pure technical efficiency. If scale efficiency equals one, the

firm is operating at CRS, otherwise it would be characterised by VRS6.

3. DATA AND RESULTS

A wide range of papers related to the treatment of the electric sector with

frontier techniques is available in the empirical literature. Schmidt and Lovell (1979,

                                                       
5  According to an output-oriented model formulation.
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1980) and Greene (1990) introduced the analysis of electricity sector data sets into

frontier functions literature. Fare, Grosskopf and Logan (1985) utilise mathematical

programming techniques to calculate six different measures of efficiency and compare

public versus private performance of electric utilities. Hjalmarsson and Veiderpass

(1992) study the local retail distribution of electricity in Sweden in 1985. They apply

different versions of the DEA model to 329 firms. Using DEA techniques and OLS

analysis, Pollit (1994) examines the cost efficiency in 129 electricity transmission and

145 electricity distribution systems in 1990. Lastly, Ray and Mukerjee (1995) perform a

comparative analysis of parametric frontier dual cost functions and non-parametric

techniques applied to the data set used previously in Greene (1990).

The data set used in the present empirical application corresponds to a sample of

70 US (investor-owned) electric utility firms in 1990. These firms are approximately

evenly spread across the United States. Table 1 provides descriptive statistics for each

as used in this study.

<<< TABLE 1 >>>

The capital stock variable is constructed for four different asset classes: steam,

nuclear, hydroelectric and other power-generating equipment. In any case, steam

technology counts for most of the electricity generated by the companies analysed in

this study. The labour variable indicates the number of workers of each firm. There are

four main categories of fuel: coal, oil, natural gas, and nuclear. BTU equivalents are

used to aggregate different types of fuels over all plants belonging to one firm. The fuel

variable is measure in millions of BTUs used in generation of electricity. Finally, total

output is indicated in megawatts hours (MWh).

3.1 Efficiency Scores

With respect to the parametric frontiers the estimated parameters of the

deterministic and stochastic production functions are given in table 2.

                                                                                                                                                                  
6  Whether those variable returns to scale represent increasing or decreasing returns to scale will depend
on the relationships among technical efficiency scores calculated under constant, variable or non-
increasing returns to scale.
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<<< TABLE 2 >>>

These results come from estimating eq. (1) by means of COLS and MLE, where

i=1,...70 indicates the firms, Yi the output, X1,i = Ki the Capital stock, X2,i = Li the

number of workers, and X3,i= Fi the fuel; β1, β2 and β3 are the elasticities of output with

respect to capital, labour and fuel. We infer the presence of constant returns to scale in

all the specifications analysed7. We estimate a Cobb-Douglas production function. More

flexible technologies, such as different versions of translog production functions,

presented major problems in the significance of their estimated parameters. Without the

factor share equations, estimation of full translog functions can be hampered by an

important problem of multicollinearity.8

Each of the stochastic specifications yields similar estimates for the partial

elasticities of output with respect to capital, labour and fuel. This result seems to

confirm the robustness of the technology and distribution hypotheses assumed in the

specification of the model.

Table 3 reports the average technical efficiency measures for each  of the models

explained in the Methods section.9

<<< TABLE 3 >>>

As the theory advances, the average efficiency scores of parametric deterministic

techniques are lower than the ones estimated through stochastic frontier approaches.

Given that COLS is a not stochastic procedure, noise is also reported as inefficiency.

COLS shifts all the residuals down to non-positive values and only one firm of

the sample is estimated as efficient10. With respect to the DEA approaches, given that

                                                       
7 Actually, this hypothesis was strongly accepted when we imposed the constraint (β1) + (β2) + (β3) = 1 to
the initially unrestricted model. The estimation procedure was made using Limdep 7.0.
8 According to Klein’s rule of thumb, multicollinearity is a problem if max Rj

2 > R2  where Rj
2 is the R2

statistic from the OLS estimation of the auxiliary regression of the jth regressor on the other regressor and
the intercept term. Several auxiliary regressions were estimated and in all of them this condition was
found. Moreover, when we checked the functional form specification of the model, applying a RESET-
Test, the Cobb-Douglas technology turned out to be well specified.
9  The individual efficiency scores generated by each method are given in Appendix 1.
10 The one with the largest positive OLS residual.
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the constraint set is less restrictive under CRS than under VRS, lower efficiency scores

are reported for the former case. In our example, DEAc presents an average level of

technical efficiency of 73.32% while DEAv efficiency average is 78.71%. For the same

reason, fewer units are found to be efficient under CRS than under VRS.

Within the stochastic approaches, no noticeable differences arise. The average

efficiency is lower with normal/half-normal models than with the normal/exponential

or normal/truncated models, but, in any case, the choice of distribution assumptions

does not seem to have a significant effect on the values of the efficiency estimates.

Stochastic frontier models’ estimates of σv
2 and σu

2
 provide us with a measure

for the relative importance of statistical noise and inefficiency in the estimation of

frontier production functions. The variance of the composed error term σe
2 is defined as

the sum of the variance of the inefficiency error term σu
2 and the variance of the

statistical noise term σv
2. Therefore the participation (%) of each of these components -

u and v - in the aggregated error term e can be determined by means of the relationships

%u = σu
2 / (σu

2 + σv
2 ) and %v =  σv

2 / (σu
2 + σv

2). According to the information in table

2, noise represents 59.72% of total variance in the exponential model. In the half-normal

and in the truncated cases, these proportions are lower, 25.18% and 17.08%

respectively, but still broadly indicative of the importance of noise in the estimation of

these models. Therefore, the fact that deterministic models do take noise into account

seems to be quite important in our illustrative application. Especially noticeable is the

COLS procedure where the average level of technical efficiency is around 60%. These

models therefore suffer from both drawbacks: the problems of a rigid specification

associated to their parametric nature, and the shortcoming of not distinguishing between

inefficiency and noise given their deterministic structure.

3.2. Robustness

Having analysed the efficiency scores, we explore the consistency of the above

models in ranking the 70 electric utilities that make up our sample. We are interested in

the robustness of the relative position of each electric utility to the use of different

methods, rather than in the average levels of technical efficiency found. Table 4
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presents pairwise Spearman rank correlation coefficients of the efficiency scores yielded

by the six methods used in our analysis11.

<<< TABLE 4 >>>

These results show that parametric models are extremely consistent in ranking

the units. Their pairwaise correlation coefficients are not less than 99%. The correlation

is also high between parametric techniques and DEAc. On the other hand, correlation

coefficients between DEAv and both the econometric approaches and DEAc are not so

high. They are around 83% for the group of parametric techniques and 89% for the

DEAc model. All parametric approaches were also estimated by imposing the CRS

constraint. It seems that the choice of parametric or non-parametric techniques,

deterministic or stochastic approaches, or between different distribution assumptions

within stochastic techniques is irrelevant if one is interested in ranking electric utilities

according to their individual efficiency scores. Only the VRS specification leads to

certain differences in those rankings, although such differences are not so large as to

stop these rankings still being comparable with the others.

From the calculated technical efficiency scores for each electric using both the

CRS and the VRS assumptions, scale efficiency for each unit can be calculated as the

ratio TEc/TEv. In our case, the average scale efficiency12 is 91.40 %, so that, the

average inefficiency due to scale reasons of scale is just 8.60 %.

There is also detect an almost perfect correlation between the size of the efficient

firms and their returns to scale, in the sense that the bigger firms have decreasing returns

to scale and vice versa. It seems that economies of scale are exhausted at the greatest

levels of production while they are still available at lower levels. This result agrees with

the low value found for the average scale inefficiency and is supporting evidence that

the units in our sample are operating at the correct scale. Some studies as Cummins and

Zi (1997), for example, have found a direct relationship between the size of units and

their inefficiency levels. In our case, no such relationship seems to appear.

                                                       
11  Spearman’s correlation coefficients were calculated using the SPSS 8.0 package.
12 Scale efficiency levels for each of the observations in the sample are given in Appendix 2.
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So far, we have analysed different methods and their robustness in the

measurement of productive efficiency. The next step in this empirical application will

provide some possible explanations for the efficiency scores described above.

3.3. Inefficiency Sources

One common practice in the literature is to regress the efficiency scores against a

vector of explanatory variables. Disaggregated data for different types of capital and

output are used as proxies for the productive structure and market demand structure

faced by each electric utility. Capital stock levels attached to steam, nuclear and

hydroelectric assets are used to evaluate the influence of each of those technologies on

higher or lower efficiency scores. Similarly, the allocation of total megawatt-hours to

three different demand categories -- commercial, industrial and residential -- is also

considered on the basis of explaining individual efficiency scores.

The high degree of correlation between those proxies for productive and market

structure and the original variables specified in our model is a handicap for two-stage

models. However, the choice of a one stage model, as Lovell (1993) points out does not

solve this problem of correlation between the variables used in the initial specification

of the model and those used in the subsequent analysis of the efficiency sources: it just

replaces a problem of omitted (two stages model) with one of multicollinearity.13

For the series of inefficiency scores to take into account as the dependent

variable, we have used that generated by the DEAc model14. The DEA-based efficiency

scores are truncated from below at one. OLS regression would produce biased and

inconsistent parameter estimates, so we use a truncated regression model (Tobit model).

The estimated parameters are given in table 5.

<<< TABLE 5 >>>

                                                       
13 Some functional forms with dissaggregated levels of capital and output used as regressors were also
estimated. However, such a large list of variables, especially in the translog version, and the high degree
of correlation among them requires a very high order in the convergence criteria of the maximum
likelihood algorithms of stochastic frontier models. This precluded the estimation of these stochastic
models.
14 The results with the COLS, SFN, SFE and SFT efficiency series were almost identical.
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Given the statistical significance of the three parameters used as proxies, it

seems that the productive structure affects the efficiency scores attained by the different

electric utilities. The market demand structure, on the other hand, seems not to have any

influence.

The variables used to measure the effects of market demand structure on the

inefficiency of each unit are characterised by a high degree of homogeneity across

observations (see table 1). Therefore it is not surprising to find that they are not

significant explanations for the inefficiency of units.

Within productive structure factors, steam and nuclear technologies are found to

be directly related to inefficient behaviour of the units in the sample, while the use of

hydroelectric technology seems to have positive effects on their efficincy. Nuclear and

even more so steam technologies seem to be exhausting their particular economies of

scale.

The main problem of “two-stage” models, such as that used in this paper, is to

know which regressors must be included in the estimation of efficiency levels and

which in their explanation. In the light of our results, besides their not being highly

correlated with the variables utilised in the frontier estimation procedure, a necessary

although not sufficient condition for regressors to be considered as proxies for

inefficiency sources is that they must be able to introduce heterogeneity in the analysis.

Thus, a necessary extension to the empirical analysis that we have so far presented

would be the introduction of additional information through variables properly

representative of the industrial organisation, such as market structure, regulatory

environment, ownership or internal organisation of the firm.

4. CONCLUSIONS

The main problem of the “two-stage” models as the ones used in this paper is to

know what regressors must be included in the estimation of efficiency levels and which

others in their explanation. Looking at our results, besides the fact of not being highly

correlated with the variables utilised in the frontier estimation procedure, a necessary

although not sufficient condition for regressors be considered as proxies of inefficiency
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sources is that they must be able to introduce heterogeneity in the analysis. So, a

necessary extension to the empirical analysis so far presented would be the introduction

of additional information through variables properly representative of factors as market

structure, regulatory environment, ownership or internal organisation of the firm.

In accordance with the Spearman rank correlation coefficients, only the DEAV

introduces some differences in the efficiency rankings. However, they can still be

considered as comparable ones. Moreover, no relationship between inefficiency and the

size of the electricity supply utilities is founded in our study.

Finally, the consistency of the models, either parametric or non-parametric, in

ranking inefficient untis, confirms our opinion that no technique is strictly better than

other. Each one has its own advantages and disadvantages. A careful consideration of

them, of the data set utilised, and of the intrinsic characteristics of the industry under

analysis will help us in the correct implementation of these techniques.
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APPENDIX 1

obs. TECOLS TESFN   TESFT    TESFE TEDEAC TEDEAV
1 0.3914 0.6233 0.6918 0.6729 0.5251 0.6181
2 0.5068 0.7681 0.8632 0.8504 0.7679 1.0000
3 0.5376 0.7887 0.8601 0.8619 0.6387 1.0000
4 0.6405 0.8666 0.9111 0.9138 0.8249 1.0000
5 0.2895 0.4973 0.5434 0.4967 0.3330 0.3492
6 0.4994 0.7556 0.8320 0.8340 0.5941 0.5979
7 0.4686 0.7180 0.7964 0.7938 0.5551 0.5772
8 0.7368 0.9116 0.9366 0.9396 0.9583 1.0000
9 1.0000 0.9486 0.9632 0.9593 1.0000 1.0000
10 0.6115 0.8467 0.8996 0.9008 0.7947 0.8614
11 0.4800 0.7303 0.8101 0.8061 0.5604 0.5670
12 0.5038 0.7574 0.8357 0.8333 0.5863 0.6077
13 0.6495 0.8743 0.9178 0.9182 0.7724 0.7749
14 0.5539 0.8008 0.8772 0.8689 0.6522 0.7012
15 0.8360 0.9354 0.9514 0.9526 1.0000 1.0000
16 0.4889 0.7567 0.8295 0.8361 0.5919 0.5926
17 0.7961 0.9237 0.9485 0.9456 0.9884 1.0000
18 0.5166 0.7689 0.8427 0.8415 0.6490 0.6534
19 0.5206 0.7981 0.8851 0.8748 0.8762 0.9199
20 0.5656 0.8024 0.8758 0.8666 0.7486 0.7521
21 0.5564 0.8136 0.8766 0.8792 0.6607 0.6883
22 0.6542 0.8819 0.9224 0.9232 0.8228 0.8318
23 0.4935 0.7488 0.8272 0.8238 0.5716 0.6197
24 0.7436 0.9096 0.9384 0.9371 0.8540 0.8976
25 0.6528 0.8702 0.9179 0.9142 0.7290 0.8110
26 0.5581 0.8076 0.8769 0.8731 0.6353 0.7039
27 0.4768 0.7396 0.8117 0.8164 0.5681 0.6009
28 0.8127 0.9175 0.9471 0.9398 1.0000 1.0000
29 0.6471 0.8828 0.9191 0.9237 0.7810 0.7858
30 0.8372 0.9337 0.9509 0.9509 1.0000 1.0000
31 0.4571 0.7225 0.7941 0.7998 0.5513 0.5758
32 0.6113 0.8613 0.9057 0.9108 0.7376 0.7553
33 0.5660 0.8284 0.8834 0.8897 0.6801 0.7188
34 0.5465 0.8067 0.8711 0.8731 0.6451 0.7010
35 0.6227 0.8691 0.9118 0.9154 0.7593 0.7929
36 0.5982 0.8547 0.8986 0.9065 0.7338 0.8248
37 0.5850 0.8383 0.8907 0.8947 0.6988 0.7683
38 0.4366 0.6878 0.7685 0.7548 0.5068 0.5870
39 0.5745 0.8254 0.8819 0.8846 0.8098 0.8214
40 0.5278 0.7832 0.8505 0.8517 0.7462 0.7557
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41 0.6239 0.8684 0.9105 0.9144 0.7509 0.7903
42 0.6313 0.8735 0.9133 0.9174 0.7612 0.8042
43 0.5524 0.8176 0.8756 0.8812 0.6609 0.7208
44 0.5431 0.8055 0.8640 0.8708 0.7439 0.8028
45 0.4825 0.7417 0.8146 0.8140 0.5748 0.6434
46 0.8370 0.9400 0.9537 0.9552 1.0000 1.0000
47 0.5145 0.7773 0.8515 0.8486 0.6142 0.7024
48 0.5955 0.8562 0.8972 0.9071 0.7709 0.8889
49 0.7064 0.9023 0.9318 0.9327 0.8320 0.9171
50 0.6028 0.8532 0.9034 0.9043 0.7250 0.8080
51 0.4921 0.7602 0.8284 0.8337 0.5837 0.6589
52 0.6770 0.8863 0.9222 0.9223 1.0000 1.0000
53 0.5388 0.7914 0.8669 0.8575 0.5962 0.7869
54 0.7379 0.9153 0.9395 0.9404 0.8829 0.9667
55 0.6376 0.8730 0.9154 0.9157 0.7492 0.8534
56 0.5766 0.8342 0.8901 0.8912 0.6775 0.7706
57 0.5424 0.8153 0.8727 0.8795 0.6558 0.7332
58 0.6525 0.8806 0.9212 0.9200 0.7819 0.9041
59 0.4991 0.7715 0.8323 0.8430 0.6254 0.7386
60 0.6445 0.8757 0.9159 0.9164 0.7442 0.8550
61 0.6273 0.8618 0.9123 0.9073 0.7073 0.9420
62 0.3204 0.5430 0.5935 0.5500 0.4043 0.5849
63 0.6144 0.8575 0.9081 0.9050 0.7122 0.8696
64 0.7657 0.9189 0.9425 0.9412 0.8874 1.0000
65 0.5856 0.8443 0.8944 0.8969 0.6855 0.8004
66 0.6748 0.8940 0.9261 0.9274 0.7929 0.9096
67 0.7546 0.9211 0.9422 0.9431 0.8948 1.0000
68 0.7107 0.9076 0.9331 0.9348 0.8458 1.0000
69 0.6874 0.8933 0.9261 0.9253 0.9743 1.0000
70 0.6838 0.8959 0.9288 0.9278 0.7841 1.0000
Notes:
obs.: observations ordered by ouput produced.
COLS: Corrected Ordinary Least Squares.
TEcols: Technical efficiency scores with COLS.
SFN: Stochastic Frontier (Half Normal).
TEsfn: Technical efficiency scores with SFN.
SFT: Stochastic Frontier (Truncated).
TEsft: Technical efficiency scores with SFT.
SFE: Stochastic Frontier (Exponential).
TEsfe: Technical efficiency scores with SFE.
DEAc: Data Envelopment Analysis (Constant Returns to Scale).
TEdeac: Technical efficiency scores with DEAc.
DEAv: Data Envelopment Analysis (Variable Returns to Scale).
TEdeav: Technical efficiency scores with DEAv.

APPENDIX 2

obs.(*) Total Output         TEDEAc TEDEAv     Scale  Ef.Returns
IRS: Increasing Returns to Scale

1 1.678.385.600 0,5251 0,6181 0,8495 CRS: Constant Returns to Scale
2 1.731.357.000 0,7679 1,0000 0,7679 IRS DRS: Decreasing Returns to Scale
3 1.823.194.900 0,6387 1,0000 0,6387 IRS
4 2.382.022.100 0,8249 1,0000 0,8249 IRS
5 2.407.029.100 0,3330 0,3492 0,9536
6 2.413.488.700 0,5941 0,5979 0,9936
7 2.652.219.700 0,5551 0,5772 0,9617 TEDEAc
8 2.683.449.600 0,9583 1,0000 0,9583 IRS
9 3.240.713.200 1,0000 1,0000 1,0000 CRS Mean 0,7333
10 3.312.763.500 0,7947 0,8614 0,9226 Standard Error 0,0177
11 3.438.851.100 0,5604 0,5670 0,9884 Median 0,7408
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12 3.842.686.400 0,5863 0,6077 0,9648 Mode 1,0000
13 4.043.033.000 0,7724 0,7749 0,9968 Standard Devt 0,1477
14 4.399.966.000 0,6522 0,7012 0,9301 Variance 0,0218
15 4.473.222.700 1,0000 1,0000 1,0000 CRS Kurtosis -0,0388
16 4.507.697.000 0,5919 0,5926 0,9988 Skewness 0,0202
17 4.620.701.000 0,9884 1,0000 0,9884 CRS Range 0,6670
18 5.465.902.900 0,6490 0,6534 0,9933 Minimum 0,3330
19 5.762.995.000 0,8762 0,9199 0,9525 Maximum 1,0000
20 5.799.669.000 0,7486 0,7521 0,9953 Sum 51,327
21 5.807.470.000 0,6607 0,6883 0,9599 Count 70,000
22 5.871.063.000 0,8228 0,8318 0,9892
23 6.124.283.000 0,5716 0,6197 0,9224
24 6.205.470.000 0,8540 0,8976 0,9514 TEDEAv
25 6.381.468.000 0,7290 0,8110 0,8989
26 6.520.492.000 0,6353 0,7039 0,9025 Mean 0,8115
27 6.964.168.000 0,5681 0,6009 0,9454 Standard Error 0,0162
28 7.149.296.000 1,0000 1,0000 1,0000 DRS Median 0,8028
29 7.541.245.000 0,7810 0,7858 0,9939 Mode 1,0000
30 7.721.213.100 1,0000 1,0000 1,0000 CRS Standard Devt. 0,1356
31 8.030.476.000 0,5513 0,5758 0,9575 Variance 0,0184
32 8.325.322.000 0,7376 0,7553 0,9766 Kurtosis 2,4517
33 8.602.467.000 0,6801 0,7188 0,9462 Skewness -1,704
34 9.943.526.000 0,6451 0,7010 0,9203 Range 1,0000
35 10.286.717.000 0,7593 0,7929 0,9576 Minimum 0,5670
36 10.397.817.000 0,7338 0,8248 0,8897 Maximum 1,0000
37 10.792.818.000 0,6988 0,7683 0,9095 Sum 51,122
38 10.900.298.000 0,5068 0,5870 0,8634 Count 63,000
39 11.507.614.000 0,8098 0,8214 0,9859
40 11.714.757.000 0,7462 0,7557 0,9874 Scale Efficiency
41 11.783.880.000 0,7509 0,7903 0,9501
42 12.399.063.000 0,7612 0,8042 0,9465 Mean 0,9140
43 13.436.381.000 0,6609 0,7208 0,9169 Standard Error 0,0092
44 14.419.022.000 0,7439 0,8028 0,9266 Median 0,9225
45 14.779.980.000 0,5748 0,6434 0,8934 Mode 1,0000
46 15.539.938.000 1,0000 1,0000 1,0000 CRS Standard Devt. 0,0769
47 15.655.908.000 0,6142 0,7024 0,8744 Variance 0,0059
48 15.722.765.000 0,7709 0,8889 0,8673 Kurtosis 1,9740
49 16.070.475.200 0,8320 0,9171 0,9072 Skewness -1,2586
50 16.941.931.000 0,7250 0,8080 0,8973 Range 0,3613
51 17.687.140.000 0,5837 0,6589 0,8859 Minimum 0,6387
52 19.678.360.000 1,0000 1,0000 1,0000 CRS Maximum 1,0000
53 19.757.191.000 0,5962 0,7869 0,7577 Sum 63,9825
54 21.436.125.000 0,8829 0,9667 0,9133 Count 70,0000
55 21.529.356.000 0,7492 0,8534 0,8779
56 21.816.200.000 0,6775 0,7706 0,8792
57 23.340.654.000 0,6558 0,7332 0,8944
58 25.916.889.000 0,7819 0,9041 0,8648
59 26.002.927.000 0,6254 0,7386 0,8467
60 31.603.013.000 0,7442 0,8550 0,8704
61 32.035.118.000 0,7073 0,9420 0,7508 Efficient units with CRS: 6
62 32.591.836.000 0,4043 0,5849 0,6912 Efficient units with IRS  4
63 36.192.125.000 0,7122 0,8696 0,8190 Efficient units with DRS: 6
64 36.309.960.000 0,8874 1,0000 0,8874 DRS
65 43.535.926.000 0,6855 0,8004 0,8564 * Observations ordered
66 46.868.634.000 0,7929 0,9096 0,8717 by output produced
67 51.776.850.000 0,8948 1,0000 0,8948 DRS
68 63.558.870.000 0,8458 1,0000 0,8458 DRS
69 64.410.130.000 0,9743 1,0000 0,9743 DRS
70 70.517.340.000 0,7841 1,0000   0,7841
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TABLES

Table 1. Main descriptive statistics of variables used in the study.
Variable Mean Max. Min. Standard

Deviation
Total Output 15.582 70.517 1.678 1.568E+10
Total Capital 94.914 409.673 9.367 91.747
Total Labour 4.993 24.607 440 5.198
Total Fuel 1.324E+10 4.750E+11 7.001E+09 1.111E+11
% Ksteam (1) 0.7674 0.9999 0.084 0.2192
% Knuclear (1) 0.1120 0.6754 0 0.1762
% Khydroelectric(1) 0.0422 0.3256 0 0.0757
% KOther GE(1) 0.0783 0.9150 0 0.1280
% Ocommercial (2) 0.2664 0.6421 0.037 0.0987
% Oindustrial(2) 0.3485 0.5533 0.1052 0.0774
% Oresidential(2) 0.3850 0.8113 0.063 0.1272

(1) Represents the percentage of capital stock  levels attached to steam, nuclear, hydroelectric and other
power- generating equipment assets.
(2) Allocation of total MWh to commercial, industrial and residential demand categories.

Table 2.Estimated parameters of deterministic and stochastic production frontiers.
(t-test statistics appear in parentheses)

COLS SFN SFT SFE

Intercept (αα) 10.819(*)
(10.014)

11.786
(15.870)

11.145
(13.886)

10.951
(14.453)

Capital (ββ1) 0.1392
(2.414)

0.1340
(1.893)

0.1066
(1.330)

0.1391
(2.270)

Labour (ββ2) 0.6441
(10.539)

0.6745
(10.865)

0.6713
(10.084)

0.6441
(11.485)

Fuel (ββ3) 0.2174
(3.474)

0.1794
(3.954)

0.2170
(4.705)

0.2174
(4.847)

R2 0.9506
F 423.529
Log-Lik. 10.1631 11.3880 11.1224 11.8625

u vσ σ 1.7239
(1.897)

2.2007
(1.405)

u

2σ 0.0621 0.0995 0.0176

v

2σ 0.0209 0.0205 0.0261

22
uv σσ + 0.2881 0.3465

u
uσ 0.6346

Theta 7.5318
(2.402)

vσ 0.1617
(5.080)

(ββ1) + (ββ2) + (ββ3)** 1.0007
{0.9756}

0.9879
[0.3570]

0.9949
[0.1421]

1.0006
[0.0230]

(*) If the estimated intercept term is corrected by shifting it upward until no residual is positive and at
least one is zero, we will get a consistent estimator of the intercept term. In our case this consistent
intercept is 11.349.
(**) CRS hypothesis test:.{ _ }:Probability associated with an F-Test (1.66). [ _ ]: Significance level in a
Wald Test-χ2 (1).
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Table 3. Technical efficiency averages.

Method Average
Efficiency

Max. Min. Standard
Deviation

Number of
efficient units

COLS 60.09 1 28.95 0.123 1
SFN 82.61 94.86 49.72 0.086 0
SFT 87.77 96.31 54.33 0.073 0
SFE 87.64 95.93 49.66 0.080 0
DEAc 73.32 100 33.3 14.77 6
DEAv 78.71 100 6.9 19.39 16

(*) The average efficiency measures of COLS, SFN, SFT, and SFE were estimated under the null
hypothesis of Constant Returns to Scale.

Table 4. Spearman correlation coefficients among alternative efficiency measures(*).

COLS SFN SFT SFE DEAc DEAv

COLS 1.000

SFN 0.994 1.000

SFT 0.995 0.994 1.000

SFE 0.991 0.998 0.994 1.000

DEAc 0.909 0.907 0.918 0.915 1.000

DEAv 0.833 0.829 0.843 0.835 0.890 1.000

(*) All the correlation coefficients among different methods are significant at the .01 level (2-tailed).

Table 5. Tobit model estimated parameters

Variable (%) Parameter
Estimate

t-student Mean Max. min. Standard
Deviation

Ksteam 0.2975    2.346** 0.7674 0.9999 0.084 0.2192

Knuclear 0.2848   1.856 * 0.1120 0.6754 0 0.1762

KHydro. -0.4295  -1.820 * 0.0422 0.3256 0 0.0757

Ocommercial 0.1049 0.530 0.2664 0.6421 0.037 0.0987

Oindustrial 0.2526 1.596 0.3485 0.5533 0.1052 0.0774

Oresidential -0.2848 -1.484 0.3850 0.8113 0.063 0.1272

** Significant coefficients at the 5% level (2-tailed).
* Significant coefficients at the 10% level (2-tailed).


