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ABSTRACT

In this paper, we propose a new test, based on the stability of the largest Lyapunov exponent
from different sample sizes, to detect chaotic dynamics in time series. We apply this new test to the
simulated data used in the single-blind controlled competition among tests for nonlinearity and chaos
generated by Barnett et al. (1997), as well as to several chaotic series, both for small and large samples.

The results suggest that the new test has a high power against different stochastic alternatives (both linear

and nonlinear), and also performswell in small samples.

JEL classification numbers: C13, C14, C15, C22
KEY WORDS: Chaos, Nonlinear Dynamics, Lyapunov exponents, Bootstrapping



1. Introduction

In a dissipative dynamical system, the existence of a positive Lyapunov exponent is usually
taken as an indication on the chaotic character of the system. Lyapunov exponents provide information on
the intrinsic instability of the trgjectories of the system, and are computed as the average rate of

exponential convergence or divergence of nearby trajectoriesin the phase space.

In recent years, there has been a burgeoning literature on the calculation of Lyapunov exponents
for an unknown dynamical system reconstructed from a single time series. The seminal paper of Wolf et
al. (1985) provides an algorithm to compute Lyapunov exponents in empirical applications, but this is
sensitive to both the number of observations and the degree of noise in the data. More recently, however,
some authors have proposed new methods for estimating Lyapunov exponents, showing a good
performance even for small samples [see, among others, Dechert and Gencay (1992), Abarbanel et al.
(1991, 1992), and Rosenstein et al. (1993)].

There are many papers using Lyapunov exponents to detect chaotic dynamics in financial time
series, especially in exchange rate series. Earlier examples of research in this area include Bajo-Rubio et
al. (1992) and Dechert and Gengay (1992), where Lyapunov exponents are used to distinguish between
linear, deterministic processes (with negative Lyapunov exponents) and nonlinear, chaotic deterministic
processes (where the largest Lyapunov exponent is positive). These and other papers have been criticised
for the absence of adistributional theory providing a statistical framework for hypothesis testing using the
calculated Lyapunov exponents. However, Gengcay (1996) presents a methodology to compute the
empirical distributions of Lyapunov exponents using a blockwise bootstrap technique. This methodology
provides a formal test of the hypothesis that the largest Lyapunov exponent equals some hypothesised
value, and can be used to test for chaotic dynamics. The test proposed by Gengay (1996) is particularly
useful in those cases where the largest Lyapunov exponent is positive, but very close to zero. More
recently, Bask and Gencay (1998) utilise the same statistical framework to provide a test for the presence
of a positive Lyapunov exponent in an observed time series. The numerical examples show that both
Gencay (1996) and Bask and Gengay (1998) test statistics behave well in small samples. Finaly, Bask
(1998), using the test suggested by Bask and Gengay’s (1998) test, finds evidence that some exchange

rates can be characterised by deterministic chaos.

Despite the growing interest on the econometric literature aimed to distinguish between non-
linear deterministic processes and non-linear stochastic processes, there is still alot of disagreement and
controversy about the available results. A key paper in this area is Barnett et al. (1997), where some data
series were simulated from different generating models in order to evaluate the behaviour, both for large
and small samples, of five highly regarded tests for nonlinearity or chaos. The tests considered in that
paper are the Hinich bispectral test (Hinich,1982), the BDS test (Brock et al., 1996), the NEGM test
(Nychka et al., 1992), the White test (White, 1989), and the Kaplan test (Kaplan, 1993). The results about



the power function of some of such tests proved to be rather surprising , since none of them had the

ability to isolate the origins of the nonlinearity or chaos to be within the structure of the economy.

The aim of this paper isto propose a new test for the presence of chaos, based on the behaviour
of the estimated Lyapunov exponents, for different sample sizes. As we shall try to illustrate, while the
largest exponent of a chaotic process is invariant with respect to sample size, the largest Lyapunov
exponent of a stochastic process is not. Therefore, we suggest testing chaotic dynamics by estimating the
empirical distributions of the largest Lyapunov exponents for different subsamples and comparing their
means. The proposed new test shows a strong power against stochastic processes, hence providing further
refinement over those of Gencay (1996) and Bask and Gengay (1998).

The rest of the paper is organised as follows. Section 2 presents the statistical framework used in
the paper. Section 3 discusses the stability of the largest Lyapunov exponent with sample size. Section 4
proposes the new test for distinguishing chaos from random behaviour. Section 5 reports the results of
applying our test to several chaotic processes, as well as to the simulated data used in the single-blind
controlled competition performed by Barnett et al. (1997). Section 6 presents a comparison with Bask and
Gengay’s (1998) test. Finally, Section 7 provides some concluding remarks.



2. A datigtical framework for testing chaotic dynamicsvia L yapunov exponents

In order to examine the properties of deterministic dynamical system we make use of ergodic
theory, since it provides a statistical framework where different degrees of complexity of attractors and
motions can be distinguished [see Eckmann and Ruelle (1985) for a survey]. Furthermore, ergodic theory
allows us to describe the time averages of a dynamical system and to consider that transients become

irrelevant. Once transients are over, the motion of the dynamical system settles typically near a subset of

An , called an attractor. In the particular case of dissipative systems, where the phase-space volumes are
concentrated by the time evolution, the volume occupied by the attractor is in general very small in
relation to the phase space. Even if a system contracts its volume, it does not mean that its length is
contracted in all directions: some directions may be stretched and some directions contracted. This
implies that, even in a dissipative system, the final motions may be unstable within the attractor. This
instability usually manifests itself in sensitive dependence on initial conditions, which means an
exponential separation of orbits (as time goes on) of points that wereinitially very close each other on the

attractor. In this case, we say that the attractor is a strange attractor and that the system ischaotic.

Statistical averages can be computed either in terms of time averages or space averages. Let us

consider, for simplicity, a discrete dynamical system of dimenson n X5 = F(%;), where
F:A"3%4® A" is a vectoria differentiable function. The time average of a function j along a
(forward) trjectory X; with initial condition X, , of adiscrete dynamical system is defined by
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In a similar way for a continuous flow f,, arising from a continuous dynamical system

% = F( x) thetime average of afunction along a (forward) trajectory is

dt
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The time averages often depend on initial conditions. However, when the dynamical system has

an attractor, all trajectories have the same statistical properties.

A measure of complexity in chaotic motion may be obtained by analyzing the sensitivity of the
dynamical behaviour to initial conditions given by two infinitely close initial states. For chaotic systems

nearby points in the phase space separate exponentially with time. Let us illustrate the basic idea by

means of a discrete dynamical system of dimension n, X,,, = lf()?t) . In order to examine the stability of



the trajectories of the system, let us consider how the system amplifies a small difference between the
initial conditions X, and X§:

X7 - X =F (%) FT(x$)@F (%)(X - X§)
where FT( %)= F(F(..F(Xp)...))denotes the T successive iterations of the dynamical system starting

from the initial condition X, , and where DF ' (%, )isthe Jacobian of function F( X).

By therule of the chain, we have

DF T (Xg)= DF (X )DF (X p)eeernn DF (%)

In this context, the Lyapunov exponents are defined as follows (Guckenheimer and Holmes,
1990): Let us consider the family of subspaces V\(Y) E V(2 E .....E V,(in the tangent space at F'(x)
and the numbers | 13 | , 3 ....3 | | withthe propertiesthat:
(1) DF(V)=Vi{

@ dmvd=n+1- ]

3 lim 1In

= lI(DFTY XDF T [ xo)I=1 jforall %51 Vi - VY, where (DFT) *
T® ¥

isthe transpose of DF T

Then, the real numbers| j are called the Lyapunov exponents of F at Xy Lyapunov exponents

offer information on how orbits on the attractor move apart (or together) given the evolution of dynamics.

One can aso define them by the rate of stretching or shrinking of line segments, areas, and various

dimensional subvolumes in the phase space. Line segments grow or shrink as e, areas as e'('1*!2)

and so forth. If one or more of the Lyapunov exponents are positive, then we have chaosin the motion of
the system. The sum of the Lyapunov exponents is negative (I +1 ,+.....+| ,<0) for dissipative

systems [see Abarbanel (1996)].

The possibility of obtaining, in a deterministic dynamical system, Lyapunov exponents that are
representative of short-run divergences in trajectories with very closed initial points is based on
Oseledec’s (1968) multiplicative ergodic theorem If we assume that there exists an ergodic measure of
the system, this theorem justifies the use of arbitrary phase space directions when calculating the largest
Lyapunov exponent. The Lyapunov exponents have then a mean in a global sense, alowing to
characterize the complexity of a deterministic dynamical system of dimension n simply by n real

numbers.



Oseledec’s (1968) multiplicative ergodic theorem states that, under wide general conditions for
function F, the limit of expression (3) does exist for dmost al X, (with respect to the invariant measure
) and is independent of the initial condition x,;considered (except for aset of null measure). Therefore,

the multiplicative ergodic theorem implies that the Lyapunov exponents are invariant numbers
representing “globally” the complexity of the dynamical system under study, independently of the initial

condition considered.

Oseledec theorem is based on the ergodic theory of deterministic dynamical systems and justifies
the use of arbitrary phase space directions when calculating the largest Lyapunov exponents.
Nevertheless, as both Whang and Linton (1999) and Tong (1990) point out, Lyapunov exponents can be
interpreted within the standard non-linear time series framework as a measure of local stability and is of

interest even outside from any direct connection with deterministic chaos.

Within the theory of dynamical systems, a chaotic system is characterised by globally bounded
trajectories in the phase space with a positive largest Lyapunov exponent, while, in theory, a white noise

process has an infinite largest L yapunov exponent (see Schuster, 1988).

Nevertheless, in practical implementations, using finite time series, any standard algorithm for
calculating the largest Lyapunov exponent will find a finite, positive value for this exp onent for arandom
process. Therefore, the largest Lyapunov exponent on its own is not able to distinguish between a chaotic,
non-linear deterministic process and a random process. This problem is especially relevant in financial
time series, where non-linear stochastic processes, such as GARCH processes, are usually postulated as
alternative model s to the chaotic behaviour [see, e. g., Hsieh (1991)].

Gencay (1996) proposed a statistical framework for testing chaotic dynamics using a moving
blocks bootstrap procedure.

Consider a sequence {Xl y Xo e XNy } of weakly dependent stationary random variables, being
{xl, X5 yeees XN} atime series realisation of such a stochastic process. According to Kiinsch (1989) and
Liu and Singh (1992), the distribution of certain estimators of interest can be consistently constructed by
applying moving blockwise bootstrap. Let Btd :{Xt X1 "'1Xt+d-1} denote a moving block of d
consecutive observations. For atime series of N elements, we can form aset { Bf' yeees B,O\',_ d+1 } of blocks
with length d. Let us consider k=int(N/d) [where int() denotes the integer part], by resampling with

replacement of k blocks denoted by { Bii ,....,Bf:( } . wewill form the bootstrap sample.

In order to obtain the sample distribution of the largest Lyapunov exponent | ..., we will repeat
this procedure to construct a sequence of sub-families of k blocks taken with replacement from the family

of d-dimensional blocks { BY .....BY_ 4.1} . that can be generated with the time series {X;, X5, ..., X } -



For each subfamily of k blocks, we can apply some standard procedure to compute for the largest
Lyapunov exponent I~rmx by taking the pairs of nearest neighbours from each subfamily of blocks.
Repeating this process a large number of times, we will obtain the empirical distribution of the largest

Lyapunov exponent |, -

There are several suitable estimation methods in order to obtain Lyapunov exponents based on
kernels, nearest neighbors, splines, local polynomials and neural nets [see Hardle and Linton (1994) for a

general discussion]. McCaffrey et al. (1992) distinguish two classes of methods for estimating the largest

Lyapunov exponent | ..: (i) Direct methods like Wolf et al.'s (1985), which assume that the initial

divergence (X, - X§) grows at the exponential rate given by | and (ii) Jacobian methods, where

max;
data are used to estimate the Jacobians, with |, computed from the estimated Jacobians, like those
proposed by MacCaffrey et al. (1992) or Gengay (1996). On the other hand, Gengcay and Dechert (1992),
Gencay and Dechert (1996) and Dechert and Gengay (2000), have studied the topological invariance of

the Lyapunov Exponent estimator from observer dynamics.

As Ziehmann et al. (1999) pointed out, a bootstrap algorithm must be used with caution if
Lyapunov exponents estimates rely on the product of matrices because matrix multiplication does not
commute, except in one dimension.. In order to avoid such complications with the product of Jacobians

along the trajectory, we use a simple direct method for estimating the largest Lyapunov exponent | .. of

a time series proposed by Rosenstein et al. (1993). Given that the divergence between the nearest
neighbours takes place at arate approximated by the largest Lyapunov exponent, Rosenstein et al. suggest

to choose a pair of neighbours as nearby initial conditions for different trajectories, and to estimate | 4,

by averaging exponential divergences of initially close state-space trajectories.

In the method proposed by Rosenstein et al. (1993), there are two key parameters to estimate the
largest Lyapunov exponent: the embedding dimension (that will be the moving-block length for the
moving blocks bootstrap procedure) and the number of discrete-time steps allowed for divergence
between nearest neighbors in the phase space. As shown in Rosenstein et al. (1993), the value of the

largest Lyapunov exponent can be biased with these two parameters.



3. Stability of largest Lyapunov exponentswith the samplesizefor chaotic processes

From a theoretical point of view, the reason for the stability of the largest Lyapunov exponent
with respect to the sample size can be found in Oseledec’s (1968) theorem. This theorem allows us to
affirm that, for a large enough sample size, these exponents will converge to some stable values

associated with the complexity of the attractor.

This theorem assures, for chaotic time series, the possibility of making short-run forecasts based
on the reconstructed phase space. The Lyapunov exponents are nothing but a measure (in exponential
scale) of the mean forecast errors using the nearest neighbour points in the phase space. However, when
analysing a time series generated by a non-deterministic stochastic process, nothing guarantees the
stability of the Lyapunov exponents. Oseledec’s (1968) theorem only affects deterministic processes via
ergodic theory. For a stochastic process, as the number of observations increases, the variability of the
largest Lyapunov exponent will be greater and, therefore, the largest Lyapunov exponent will also

increase without limit with the sample size.

As we shall see, our simulations show an essential difference between chaotic and stochastic
processes via Lyapunov exponents. If we want to reconstruct trajectories of atime seriesin a phase space
that are sampled from a stochastic process, there is not guarantee of convergence in any algorithm
towards the largest Lyapunov exponent, because the Lyapunov exponents are not necessarily stable and
independent of the initial conditions and sample size. For stochastic processes, the algorithm is only able
to estimate local Lyapunov exponents. Local Lyapunov exponents are a measure of local stability of the

process and may be highly dependent on the sample size and theinitial condition considered.

Our simulations are based on different stochastic and chaotic processes. First of al, and
following Barnett et al. (1997), let us consider samples of size 380 and 2000 observations of the following

five models:

(i) A fully deterministic, chaotic Feigenbaum recursion of the form:
Yy =357y 1(1- Vi)

where theinitial condition wasset at Y, = 0.7,

! The Feigenbaum series proposed in Barnett etal. 1997)[i.e, y, =c y.1(1- Vi.1),c =357,y =0.71is
really special as can be seen in Fernandez-Rodriguez et a. (2000). The problem isthat the parameter ¢ = 3.57 of this
map istoo close to ¢y = 3.569946.., the value of the parameter where the period 2" (n® ¥ ) cycdlefirst occurs[see
Jackson, 1989]. For ¢ <cy, we have 2" cyclesand for ¢y £ ¢ £ 4 themap displaysarich variety of behaviours[see
Jackson, 1989]. For ¢ > ¢, , except for the narrow bands where the solutions would oscillate again according to ann-
cycle(e.g. n=3 for3.83<c<3.86), thereisan infinite number of possible values for v, that never repeatsitself.

For ¢ =3.57 @y @3.56994€ used by Barnett et al. (1997), the sequence generated by the Feigenbaum
map is much less "regular" than a sequence with afinite period of repetition. Nevertheless, the ¢, sequencehasan

important difference with true chaotic behaviour. The reason is that the c, sequenceisdtill margindly predictablein
the sensethat if two initial values are close enough to each other, the two sequences generated by Feigenbaummap,



(i1) A GARCH process of thefollowing form:
y, =h' 2y,
where h, isdefined by
h =1+0.1y2 ; +0.8h,_,,
with hy =1 and y, =0.

(iii) A nonlinear moving average (NLMA) process:

Yo =W +0.80 qU 5.
(iv) An ARCH process of the following form:

y, =(1+05y2 M 2y,

with the value of theinitial observationsissetat y, =0, and

(v) An ARMA model of the form:
y; =0.8y;.1 +0.15y;_, +u, +0.3u;_ 1,
with yg =1 and y; =0.7.

With the four stochastic models, the white noise disturbances, u;, are sampled independently

from astandard normal distribution. Note that of the five generating models, only model (i) is chaotic.

In order to provide more and stronger evidence supporting our claim on the observed invariance
property of the largest Lyapunov exponent holds for all chaotic processes, we also consider the Hénon

map and the Lorenz attractor.

(vi) The Hénon (1976) map is described by the following system:

Xee1 =1- 1.4xt2 + Vi
Yi+1 = 0.3%;

with theinitial points X; =0.5 and y;=0.2.

(vii) Thewell-known Lorenz (1963) attractor isthe three-dimensional continuous-time system:

x=10(y- Xx)

y=x28-2)y.

z=xy- 22
Y3

for these two initial conditions, will be very closed to each other even after avery long time. Thisis so because, at
c=cy, theinfinitecycleis stable.
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Lorenz’s system was solved using a straightforward fourth-order Runge-Kutta method.

Considering the average mutual information 1(T) for the signal X(t), the minimum of this function is at
T=10; following Abarband (1996), a time lag t =10 was used in order to obtain a series

X(to+nt), n=1,...,2000 asisusual for the phase reconstruction.

We calculated the largest Lyapunov exponent applying the algorithm proposed by Rosenstein et
al. (1993) to the time series generated by these models for each sample size between 100 and 2000 taken
by groups of a hundred (i. e., 100, 200, 300,...2000). We also consider different embedding dimensions

from d=2 to 6. Finally, regarding the number of discrete-time steps allowed for divergence between

nearest neighbours, wetake i = 2.

Figures 1 to 5 display the results of estimating the largest Lyapunov exponents IA,mX for the

simulated data series used in Barnett et al. (1997) competition and for the two new chaotic series (Hénon

map and L orenz attractor) for different sample sizes.

[Figures1to 5, Appendix C]

As can be seen, as the embedding dimension increases, the estimated |, from thisalgorithm

is gradually downward-biased.

Given the evidence presented in Figures 1 to 5, the existence of a positive largest Lyapunov
exponent does not allow to infer the presence of chaos in a given time series. However, these figures
show an interesting and essential difference between deterministic and stochastic processes. While the
largest Lyapunov exponent, in the case of the deterministic models, stabilises (in some cases even
decreases) as the sample size increases, for all the stochastic processes, the largest Lyapunov exponent
increases with the sample size. This behaviour remembers the well-known process of saturation of the
correlation dimension, in a chaotic time series, when the embedding dimension increases. As a matter of
fact, this is the base of the test proposed by Grassberger and Procaccia (1983) to detect deterministic
chaos.

11



4, A new test for distinguish chaos from random behaviour via L yapunov exponents

In this section, we propose a new test, based on the stability of the largest Lyapunov exponent
from different sample sizes, to detect chaotic dynamics in time series. As we will see, this new test has a

high power against different stochastic alternatives, both linear and nonlinear.

This new test has a deterministic process as the null hypothesis, while the alternative hypothesis
is that of a stochastic process (i. e., high-dimensional chaos), since randomness can be viewed as infinite-

dimensional chaos.

Let be a time series of length N, {xl,xz, ..... ,XN}. Let us divide the time series into different
subsamples {Xl,xz,...le,....,XTz,....,XTr_l,....,XTr :XN}, and consider an empirical distribution of
the largest Lyapunov exponent from 100 moving block bootstrap of such time series for the different
subsamples {Xl,xz, ..... XT; } for i=1,....r. Let (| ;ax(Ti) bethe mean of distributions of the 100 largest

Lyapunov exponents computed from those sample sizes. Given that we have shown that the largest

Lyapunov exponent stabilises when increasing the sample size in a deterministic process, but it increases
with the sample size in a stochastic process, we propose using <I max( T,) to test for the stability of the

largest Lyapunov exponent.

The equality of means may be tested recalling the traditional econometric test of lineal
independence between the mean of largest Lyapunov exponents (I maX(T) , inevery sample size, and the
samplesize T. To that end, we have performed alinear regression of

(lmadT)=ag+a T+er forT=T,....T, =N, @
so that the estimated parameter él can be used to test if the largest Lyapunov exponent does not increase

with sample size, implying a underlying deterministic process.

The null hypothesisHp and the alternative hypothesisH; are formulated as follows:
Ho: a1 £0 (deterministic process)

H;: a4, >0 (stochastic process)

12



5 Applications

In this section we test for deterministic chaos using the simulated data from the seven models
presented in the previous section. In all cases, the largest Lyapunov exponents were estimated using the

algorithm proposed in Rosenstein et al . (1993).

Following Barnett et al. (1997), we compute our tests twice: for small samples of 380
observations and for large samples of 2000 observations. For the 380 observations case, the subsample
sizes are asfollows:

T,=190,T, =211,T,=232,T, =253,T5 =274,
Tg =295,T; =316,Tg =337,Tg =358, T, = 380

For the 2000 observations case, the subsample sizes are as follows:
T, =1000,T, =1100,T; =1200,T, =1300,T5 =1400,Tg = 1500,
T; =1600,Tg =1700, Ty =1800,T,9 =1900,T;; =2000.

In order to implement our test, we compute the largest Lyapunov exponent for small subsample

sizes and large subsample sizes for moving-block lengthsd between 2 and 6.

Tables 1 to 7 [Appendix A] show the results of our regression thesing for the stability of the
mean largest Lyapunov exponent <| maX(T) (for a sample of 100 largest Lyapunov exponents estimated

by bootstraping ) when the sample size T increases.

As can be seen, if the 1% marginal significance level is used, for the Feigenbaum (Table 1) and
Hénon (Table 6) series the test correctly distinguish deterministic from random behaviour for sample
sizes of 380 and 2000 observations. Regarding the Lorenz attractor (Table 7), for T=380, the tests
incorrectly reject the null hypothesis for small (d=2) and large (d=6) embedding dimensions, while for
T=2000, it only incorrectly rejects the null hypothesis for d=2. Finally, note that the test correctly rejects
the null hypothesisfor all the stochastic processes (see Tables 2t0 5).

[ Tables1to 7]

Therefore, our simulation results suggest that our test correctly reject chaos for the GARCH,
NLMA, ARCH and ARMA stochastic processes in small and large sample sizes and for all embedding
dimensions. On the contrary, our test does not reject chaos in the case of the best-known chaotic
processes for moving-block lengths from 3 to 5. According to these results, it appears that a strategy of

using d =3, d=4 or d=5 could be recommended for practitioners when applying our test.

13



Comparison of the power performance of the new test with Bask and Gencay’s (1998)

Bask and Gengay (1998) proposed using a moving-blocks bootstrap procedure to test for the

presence of a positive Lyapunov exponent in an observed stochastic time series. The null hypothesisHg

and the alternative hypothesisH; are formulated as follows:

Ho: | max =0 (no chaotic process)

Hi: | ax >0 (chaotic process)

wherel .., isthelargest Lyapunov exponent.

vi)

The test scheme consists of the following steps:

Reconstruct the phase space of the time series {Xl,xz, ..... ,XN} with a embedding dimension d

and estimate the largest Lyapunov exponent IAmX using any existing algorithm. Each d-history
of the reconstructed phase space will be considered as a block, obtaining in this way a sequence
of blocks { B ,.....BS 4.1}

Resample, with replacement, k blocks of the reconstructed phase space, being k=int(N/d). The

d

ig e Bicl’( } constitutes the bootstrap sample.

subfamily of blocks{ B
From this subfamily, estimate the largest Lyapunov exponent |~max for the time series under

study and calculate |y, - | -

I max - | ex

Construct a one-sided 97,5% confidence interval by calculating the critica value as
e - 0(97.5%), following from Pr{l ey - ex < a(97.5%)} = 0.975, where ¢(97.5%)
isthe quartile of the distributionin step iv)

If IAmax - q(97.5%)>0,then the null hypothesis is rejected, which means that the dynamicsis

chaotic.

Tables 8 to 14 show the results of applying the test proposed by Bask and Gencay (1998) to the

simulated data examined in the previous section for moving blocks of different sizes (i. e., d=2 to 6) and
for different sample sizes (T=380 and 2000).

[Tables 8to 14, Appendix B]

As can be seen, this test incorrectly rejects the null the hypothesis, not rejecting the alternative

hypothesis | ;5 >0 inany of the stochastic processes considered in this paper (GARCH, NLMA, ARCH

and ARMA). On the contrary, the test does correctly reject the null hypothesis, not rejecting the

alternative hypothesis for the chaotic processes (Feigenbaum, Hénon and L orenz).

14



7. Concluding remarks

Empirical research on detection of chaotic behaviour has expanded rapidly, but results have

tended to be rather inconclusive, dueto the lack of appropriate testing methods.

The general practice has been to take the existence of a positive Lyapunov exponent as an
indication that the system is chaotic. However, this condition is not sufficient for the detection of chaos,
and does not help us to distinguish a chaotic process from a stochastic one. Indeed, any standard
algorithm for calculating the largest Lyapunov exponent will find a finite, positive value for this

exponent, both for chaotic aswell asfor stochastic processes.

In this paper, we combine the bootstrap statistical framework for hypothesis testing using the
computed Lyapunov exponents (Gencay, 1996), with the ergodic theory of deterministic dynamical
systemsin order to develop a new test to detect chaotic dynamicsin time series. The new test is based on
the stability of the mean in the distributions of the largest Lyapunov exponent estimated from different
sample sizes, which is guaranteed by Oseledec's (1968) theorem. This theorem provides a strong feature
of deterministic processes that is not shared by stochastic processes. We show that, while for (linear and
nonlinear) stochastic processes the largest Lyapunov exponent increases with the sample size, for chaotic
series the largest Lyapunov exponent is invariant when increasing the sample size. We compute the
largest Lyapunov exponent using a robust version of the algorithm proposed by Rosenstein et al. (1993),

considering the mean of divergences between pairs of close trajectories.

We have applied this new test to the simulated data used in the single-blind controlled
competition among tests for nonlinearity and chaos generated by Barnett et al. (1997), aswell as severd
chaotic series, both for small and large samples (380 and 2000 observations, respectively). The results
suggest that the new test has a high discriminatory power against interesting stochastic alternatives, both
linear and nonlinear (GARCH, NLMA, ARCH and ARMA).

Indeed, the proposed new test is able to correctly distinguish deterministic from random
behaviour for sample sizes of 380 and 2000 observations, and for moving-block lengths from 3 to 5.
However, for extreme values of the block size (2 and 6) our test incorrectly rejects the null hypothesis for
sample size of 380 observations for one of the three chaotic processes considered. For sample size of
2000 observations our test does not correctly reject the null for all chaotic processes in almost every block

size lower than 7, except for the Lorenz seriesin block size 2.

Finally, our test for stability of largest Lyapunov exponent correctly rejects the null hypothesis of
determinism for al the stochastic process (GARCH, NLMA, ARCH and ARMA), regardless the sample
size and for al block size considered. On the contrary, our test does not reject chaos in the case of the

best-known chaotic processes for block size from 3 to 5.

15



When comparing the results from our test with those from the competing test proposed by Bask
and Gengay (1998), we conclude that the latter cannot correctly distinguish between chaotic and
stochastic processes, although it correctly rejects the null hypothesis (of no chaos) for the chaotic

processes.

Therefore, the results presented in this paper suggest that our test improves over several tests
available in the literature, since it has the ability to distinguish between deterministic or stochastic

processes. |n addition, our test behaveswell in small samples.
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Appendix A

Table 1: Test for equality of the largest Lyapunov exponents from different sample sizes.

Feigenbaum process (1) (2).

Samplesize T=380(3) T=2000 (3)
Coefficients of linear regression a, a,
Block size=2 -0.0001 -0.0000
(-3.5657) (-1.8612)
Block size=3 -0.0001 -0.0000
(-2.0933) (-0.2914)
Block size=4 -0.0000 -0.0000
(-0.3795) (-2.1983)
Block size=5 -0.0000 -0.0000
(-1.1709) (-1.1000)
Block size=6 0.0000 0.0000
(0.1832) (0.5617)

Notes:
(1) OLSestimationof thelinear regression (I . (T)) =@, +&,T + € witht-ratioin brackets.

(2) ®denote rejection of the null hypothesisHo : @4 £ 0 (deterministic process) at the 1% level.
(3) Thecritical valuefor thet-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821).




Table 2: Test for equality of the largest Lyapunov exponents from different sample sizes.

GARCH process (1) (2).
Samplesize T=380(3) T=2000 (3)
Coefficients of linear regression a, a,
Block size=2 0.0010 0.0001
(742839 (21.32179)
Block size=3 0.0007 0.0001
(9.659%5°) (14.8049?)
Block size=4 0.0005 0.0001
(84568°) (13.7545%)
Block size=5 0.0006 0.0000
(8.33759) (7.40329)
Block size=6 0.0004 0.0000
(9.8683°) (157122

Notes:
(1) OLSestimationof thelinear regression (I . (T)) =@, +&,T + € witht-ratioin brackets.
(2) “*denote rejection of the null hypothesisHo : @4 £ 0 (deterministic process) at the 1% level.
(3) Thecritical valuefor thet-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821).




Table 3: Test for equality of the largest Lyapunov exponents from different sample sizes.

NLMA process (1) (2).
Samplesize T=380(3) T=2000 (3)
Coefficients of linear regression a, a,
Block size=2 0.0011 0.0002
(13.2308°) (30.3189%)
Block size=3 0.0004 0.0001
(5.5576°) (36.2851%)
Block size=4 0.0002 0.0001
(3.69529) (21.82719
Block size=5 0.0003 0.0001
(11.65%6°) (15.0050%)
Block size=6 0.0004 0.0001
(950419 (96585

Notes:
(1) OLSestimationof thelinear regression (I . (T)) =@, +&,T + & witht-ratioin brackets.
(2) “denoterejection of the null hypothesisHo : @4 £ 0 (deterministic process) at the 1% level.
(3) Thecritical valuefor thet-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821).




Table 4: Test for equality of the largest Lyapunov exponents from different sample sizes.
ARCH process (1) (2).

Samplesize T=380(3) T=2000 (3)
Coefficients of linear regression a a,
Block size=2 0.0093 0.0001
(11.0229°) (12.4659%)
Block size=3 0.0001 0.0001
(13.9478°) (1856817
Block size=4 0.0001 0.0001
(971149 (1155039
Block size=5 0.0004 0.0000
(811439 (10.4566)
Block size=6 0.0003 0.0001
(8.95329) (17.89113)

Notes:
(1) OLSestimationof thelinear regression (I . (T)) =@, +&,T + & witht-ratioin brackets.
(2) “denoterejection of the null hypothesisHo : @4 £ 0 (deterministic process) at the 1% level.
(3) Thecritical valuefor thet-statistic at the 1% level for T=380 (T=2000) is2.896 (2.821).




Table5: Test for equality of the largest Lyapunov exponents from different sample sizes.
ARMA process (1) (2).

Samplesize T=380(3) T=2000 (3)
Coefficients of linear regression a, a,
Block size=2 0.0008 0.0001
(16.0477°) (37.38057)
Block size=3 0.0007 0.0001
(6.8056°) (13.38079)
Block size=4 0.0005 0.0001
(4.6824°) (15.22379)
Block size=5 0.0002 0.0001
(364309 (1550159
Block size=6 0.0003 0.0001
(6.4041°%) (103826

Notes:
(1) OLSestimationof thelinear regression (I . (T)) =@, +&,T + € witht-ratioin brackets.
(2) “denoterejection of the null hypothesisHo : @4 £ 0 (deterministic process) at the 1% level.
(3) Thecritical valuefor thet-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821).




Table 6: Test for equality of the largest Lyapunov exponents from different sample sizes.

Hénon process (1) (2).

Samplesize T=380(3) T=2000 (3)
Coefficients of linear regression a, a,
Block size=2 0.0001 0.0000
(1.7765) (25822)
Block size=3 0.0000 0.0000
(0.2710) (1.7611)
Block size=4 -0.0003 -0.0000
(-5.9803) (-2.4872)
Block size=5 0.0000 0.0000
(15134) (0.8518)
Block size=6 0.0001 0.0000
(2.1635) (0.0867)

Notes:
(1) OLSestimationof thelinear regression (I . (T)) =@, +&,T + € witht-ratioin brackets.
(2) “denoterejection of the null hypothesisHy : @1 £ 0 (deterministic process) at the 1% level.
(3) Thecritical valuefor thet-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821).




Table 7: Test for equality of the largest Lyapunov exponents from different sample sizes.

Lorenz process (1) (2).

Samplesize T=380(3) T=2000 (3)
Coefficients of linear regression a, a,
Block size=2 0.0005 0.0001
(7.1435°) (1049127
Block size=3 0.0001 0.0000
(2.1601) (0.9722)
Block size=4 -0.0001 0.0000
(-1.0223) (0.3579)
Block size=5 0.0002 0.0000
(1.9083) (2.3860)
Block size=6 0.0004 0.0000
(415909 (2.2246)

Notes:
(1) OLSestimationof thelinear regression (I . (T)) =@, +&,T + € witht-ratioin brackets.

(2) “denoterejection of the null hypothesisHo : @4 £ 0 (deterministic process) at the 1% level.
(3) Thecritical valuefor thet-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821).




Appendix B

Table 8: Results of Bask and Gencay (1998)”s test. Feigenbaum process.

Samplesize T=380(1) T=2000 (1)
|A1 Critical value Critical value Critical value IAl Critical value Critical value Critical value
IA1 - (9% IA1 - (97.5%) IA1 - g(95% IA1 - (9% IA1 - (97.5%) IA1 - 9(95%
Block size=2 0.2599 0.1850 0.1943 0.2007 0.2714 0.1984 0.2007 0.2073
Block size=3 0.2598 0.1612 0.1762 0.1818 0.2699 0.1853 0.1946 0.1958
Block size=4 0.1629 0.0833 0.0838 0.0850 0.1692 0.0775 0.0813 0.0877
Block size=5 0.0494 -0.1023 -0.0968 -0.0883 0.0514 -0.1042 -0.1012 -0.0979
Block size=6 0.0463 -0.1198 -0.08%4 -0.0795 0.0482 -0.104 -0.0966 -0.0787
Note:

(1) IAl isan estimation of the largest Lyapunov exponent, and g(.) isthe quartile for the empirical distribution formed by calculating I~l - IAl.

I~1 isthe largest exponent from the bootstrap sample. The number of boostrap valuesis 100.
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Table 9: Results of Bask and Gengay (1998) s test. Garch process.

Samplesize T=380(1) T=2000 (1)
Garch |A1 Critical value Critical value Critical value |A1 Critical value Critical value Critical value
" - (9%, | I'{- 9(97.5%) | I';- (9% "1 - (9%, | ;- q(97.5%) | I'y- q(95%,
Block size=2 1.3036 12115 1.2153 1.2248 1.7089 1.6447 1.6618 1.6676
Block size=3 0.8173 0.7028 0.7554 0.7575 1.0555 10133 1.0250 10275
Block size=4 0.5901 05135 0.5208 0.5264 0.7447 0.6998 0.7092 0.7116
Block size=5 04318 0.3362 0.3558 0.3874 0.5323 0.4982 0.5001 0.5037
Block size=6 0.3090 0.2280 0.2471 0.2569 0.4081 0.3657 0.3779 0.3845
Note:

(1) Fl isan estimation of the largest L yapunov exponent, and q(.) isthe quartile for the empirical distribution formed by calculating Fl - Fl.

Fl isthe largest exponent from the bootstrap sample. The number of boostrap valuesis 100.
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Table 10: Results of Bask and Gengay (1998) s test. NIma process.

Samplesize T=380(1) T=2000 (1)
|A1 Critical value Critical value Critical value |A1 Critical value Critical value Critical value
"1 - q(99%, | ;- q(97.5%) "1 - (9%, "1 - (9%, | ;- q(97.5%) | I'y- q(95%,
Block size=2 1.2835 11745 1.2085 12152 1.6693 15954 1.6148 16191
Block size=3 0.7968 0.6887 0.7299 0.7484 1.0579 1.0070 1.0206 1.0245
Block size=4 05234 0.4419 0.4465 0.4589 0.7364 0.6962 0.7041 0.70901
Block size=5 0.4048 0.2908 0.3442 0.3567 0.5364 0.4868 0.4947 0.5001
Block size=6 0.3188 0.2474 0.2568 0.2689 0.4070 0.3682 0.3780 0.3832
Note:

(1) IAl isan estimation of the largest Lyapunov exponent, and q(.) isthe quartile for the empirical distribution formed by calculating |~1 - IAl.

|~1 isthe largest exponent from the bootstrap sample. The number of boostrap valuesis 100.
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Table 11: Results of Bask and Gengay (1998) stest. Arch process.

Samplesize T=380(1) T=2000 (1)
|A1 Critical value Critical value Critical value |A1 Critical value Critical value Critical value
"1 - q(99%, | ;- q(97.5%) "1 - (9%, "1 - (9%, | ;- q(97.5%) | I'y- q(95%,
Block size=2 13125 11971 1.2039 1.2198 1.6506 15757 1.5943 1.6003
Block size=3 0.8143 0.7192 0.7375 0.7525 1.0706 10228 1.0324 1.0350
Block size=4 0.5571 0.4444 0.4799 0.4974 0.7440 0.6878 0.6978 0.7142
Block size=5 0.4042 0.3196 0.3318 0.3463 05411 0.5029 0.5050 0.5089
Block size=6 0.2054 02172 0.2337 0.2426 04135 0.3647 0.3724 0.3817
Note:

(1) Fl isan estimation of the largest Lyapunov exponent, and g(.) isthe quartile for the empirical distribution formed by calculating Fl - Fl.

Fl isthe largest exponent from the bootstrap sample. The number of boostrap valuesis 100.
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Table 12: Results of Bask and Gengay (1998) s test. Arma process

Sample size T=380(1) T=2000 (1)
|A1 Critical value Critical value Critical value |A1 Critical value Critical value Critical value
" - (9%, | I'{- 9(97.5%) | I';- (9% "1 - (9%, | ;- q(97.5%) | I'y- q(95%,
Block size=2 11631 1.0760 1.0861 1.0%41 15186 14851 1.4868 14911
Block size=3 0.7374 0.6380 0.6452 0.6625 0.9749 0.9249 0.9408 0.9449
Block size=4 0.4927 0.4062 0.4227 0.4262 0.7030 0.6599 0.6673 0.6740
Block size=5 0.3746 0.3023 0.3063 0.3116 0.5351 0.4919 0.4951 0.5004
Block size=6 0.2958 0.1798 0.2196 0.2287 0.4137 0.3810 0.3893 0.3911
Note:

(1) IAl isan estimation of the largest Lyapunov exponent, and g(.) is the quartile for the empirical distribution formed by calculating |~1 - IAl.

|~1 isthe largest exponent from the bootstrap sample. The number of boostrap valuesis 100.
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Table 13: Results of Bask and Gengay (1998) s test. Hénon process

Sample size T=380(1) T=2000 (1)
|A1 Critical value Critical value Critical value IAl Critical value Critical value Critical value
IAl - (9% IAl - 9(97.5%), IA1 - g(95% IA1 - (9% IAl - 9(97.5%), IAl - 9(95%
Block size=2 04154 0.3005 0.3563 0.3653 0.4407 0.4083 0.4152 0.4158
Block size=3 0.3686 0.2887 0.2958 0.3041 0.3953 0.3652 0.3713 0.3727
Block size=4 0.3637 0.2857 0.2980 0.3038 0.3734 0.3404 0.3501 0.3514
Block size=5 0.3836 0.2971 0.309% 0.3221 0.3853 0.3443 0.3581 0.3603
Block size=6 0.3825 0.3033 0.3135 0.3270 0.3831 0.3557 0.3598 0.3606
Note:

(@) IA1 isan estimation of the largest Lyapunov exponent, and g(.) is the quartile for the empirical distribution formed by calculating IWl - IAl.

I~l isthe largest exponent from the bootstrap sample. The number of boostrap valuesis 100.
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Table 14: Results of Bask and Gencgay (1998) s test. Lorenz process.

Samplesize T=380(1) T=2000 (1)
|A1 Critical value Critical value Critical value IAl Critical value Critical value Critical value
IA1 - (9% IAl - 9(97.5%), IA1 - g(95% IA1 - (9% IAl - 9(97.5%), IAl - 9(95%
Block size=2 0.9234 0.7842 0.8067 0.8197 1.2207 11520 11764 1.1800
Block size=3 0.6417 0.4788 0.5200 0.5408 0.7427 0.6784 0.6952 0.6999
Block size=4 0.5010 0.3051 0.3914 0.4071 0.5680 0.4862 0.4953 0.5020
Block size=5 0.4293 0.2590 0.2908 0.3409 0.4690 0.3900 0.4052 04105
Block size=6 0.3407 0.1932 0.2207 0.2270 0.3869 0.2694 0.3249 0.3277
Note:

(1) IAl isan estimation of the largest Lyapunov exponent, and g(.) is the quartile for the empirical distribution formed by calculating |~1 - rl.

I~1 isthe largest exponent from the bootstrap sample. The number of boostrap valuesis 100.
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Appendix C

Figure1:

Largest Lyapunov exponents vs. sample size. Embedding dimension d=2
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Figure 2:

Largest Lyapunov exponents vs. sample size. Embedding dimension d=3
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Figure 3:

Largest Lyapunov exponents vs. sample size. Embedding dimension d=4
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Figure 4:

Largest Lyapunov exponents vs. sample size. Embedding dimension d=5

feigembaum 1

0

200

400

600

800 1000 1200 1400

sample size

1600

1800

2000

37



Largest Lyapunov exponents

0.45

0.4

0.35

0.3

0.25

0.2

0.1

0.05

Figure 5:

Largest Lyapunov exponents vs. sample size. Embedding dimension d=6
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