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1. Introduction

In this paper we are interested in the study of the following dynamical system (see [2],

[3]):
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which describes the exchange rate evolution. tS  is the exchange rate at the moment t; b is

the discount factor that speculators use to discount the future expected exchange rate

(0<b<1). The parameter b measures the influence of expected future exchange rate value



on its present value. tm  is the weight given by chartists and it is defined by:
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The parameter β  determines the speed with which the weight of the chartists declines

and measures the degree of divergence of the fundamentalists’ estimates from the

equilibrium exchange rate. It is the parameter that measures the precision degree of the

fundamentalists’ estimates (see [2], [3]). When the exchange rate is in the neighborhood

of the equilibrium rate, chartists' behavior dominates. If the fundamentalists observe a

deviation today, then they expect that the market exchange rate to return to the

fundamental equilibrium exchange rate with the speed 0>α  during the next period.

The fundamentalists expect the market rate to return to that fundamental rate *
tS  with the

speed α  during the next period, if they observe a deviation today

We consider the case 1>c . In the particular case in which 2=c , the power spectrum

and the fractal dimension of the attractor of this model have been partially studied (in

[3]).

Mathematical and numerical results (for the same situation 2=c ) are presented in other

works (see [5], [6], [9]). There are proof when the fixed point of the system (1) is stable

or unstable. In the case in which the fixed point is stable, for certain values of parameters

it is shown that the fix point is locally or globally attractive. The existence of periodical

cycle of period 2 is also investigated. Numerical simulation reveals situations in which

the evolution is chaotic, periodical, quasi-periodical. Situations in which chaotic and non

chaotic attractors coexist are find.

This paper is focused to find how the dynamics of the system (1) is changed when the

parameter c is changed.



2. Some qualitative properties of the dynamical system defined by (1)

If we denote tt Ss ln= , then the system (1) can be rewritten in the following way:
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with ZtRst ∈∀∈ , .

If we introduce the function 22: RRF → , ( ) ( ) ( )( )yxFyxFyxF ,,,, 21=  with ( ) yyxF =,1

and ( ) ( ) ( )xyyyyxF φϕ +=,2  in which
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we can present (3) in the form:

(4) ( ) ( )tttt ssFss ,, 11 −+ =

The forms (3) and (4) are used at different steps in the study of the system (1). The form

(4) is necessary for obtain the eigenvalues of the Jacobean matrix of the function F, to

obtain also the Lyapunov exponents of the system and in study of periodical points of the

system.

Proposition 1 The system (4) has a unique fix point (0,0). This point (0, 0) is stable for
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the system  (4) has not periodical points of period 2.

Proposition 3 For βα ,,b  where ( )1,0∈b , 
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β  the system (4) has only one periodical cycle of period

2. A point ( )10 , ss  belong to this cycle if and only if 0s  and 1s  are solution for the

equation:
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Proposition 4. In the conditions of Proposition 3, if ( )10 , ss  belong to the periodical

cycle, then:
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3. Numerical simulations.

We consider now a particular case when there are no periodical points of period 2. We

take 2.6,95.0,2 === βα b , the initial condition is ( ) ( )02.0,02.0, 10 −=ss  and c  is

considered variable. We are interested to know the evolution of the system, in this

particular case.

If ( )05.1,1∈c ,  then the trajectory tends to the fix point (0,0). For ( )25.1,05.1∈c ,  the

trajectory tends to a limit cycle (quasi-periodical behavior).

For ( )10,25.1∈c  the system (1) display a chaotic behavior. Some of the computed

results are plotted in ( )1, +tt ss  space on the Figures 1-6, the computation was made using

the software Mathematica. A measure of the average rate of exponential divergence

exhibited by a chaotic system is given by the Lyapunov exponents of the system; the

positivity of such exponents can suggest the presence of chaos. The values of the

Lyapunov exponents 1λ  and 2λ , given for the strange attractors represented in the

Figures 1-6, confirm that the system (1) has in these cases a chaotic evolution. In order to

obtain the values of the Lyapunov exponents we have used the method proposed in [4]

and Householder QR factorization (see [7]). To estimate the values of these exponents,

we have used an implementation with Macros-Visual Basic for Application (see [1]).

For c > 10, we observe that ∞→ts , when ∞→t .
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Conclusion

1. The main conclusion is that c is a major parameter, which influence the dynamic

of the exchange rate in this model.



2. The model of chartists (see [2]) say that if the chartists observe today an exchange

rate depreciation (appreciation) then they expect for the following period an other

depreciation (appreciation) and that when c it is height these depreciations

(appreciations) are strong. We can remark this influence of parameter c in the

examples present in Section 3.
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