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ABSTRACT 

 

In this paper, we propose a new test, based on the stability of the largest Lyapunov exponent 

from different sample sizes, to detect chaotic dynamics in time series. We apply this new test to the 

simulated data used in the single-blind controlled competition among tests for nonlinearity and chaos 

generated  by Barnett et al. (1997), as well as to several chaotic series, both for small and large samples. 

The results suggest that the new test has a high power against different stochastic alternatives (both linear 

and nonlinear), and also performs well in small samples. 
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1. Introduction 

 

In a dissipative dynamical system, the existence of a positive Lyapunov exponent is usually 

taken as an indication on the chaotic character of the system. Lyapunov exponents provide information on 

the intrinsic instability of the trajectories of the system, and are computed as the average rate of 

exponential convergence or divergence of nearby trajectories in the phase space. 

 

In recent years, there has been a burgeoning literature on the calculation of Lyapunov exponents 

for an unknown dynamical system reconstructed from a single time series. The seminal paper of Wolf et 

al. (1985) provides an algorithm to compute Lyapunov exponents in empirical applications, but this is 

sensitive to both the number of observations and the degree of noise in the data. More recently, however, 

some authors have proposed new methods for estimating Lyapunov exponents, showing a good 

performance even for small samples [see, among others, Dechert and Gençay (1992), Abarbanel et al. 

(1991, 1992), and Rosenstein et al. (1993)].  

 

There are many papers using Lyapunov exponents to detect chaotic dynamics in financial time 

series, especially in exchange rate series. Earlier examples of research in this area include Bajo-Rubio et 

al. (1992) and Dechert and Gençay (1992), where Lyapunov exponents are used to distinguish between 

linear, deterministic processes (with negative Lyapunov exponents) and nonlinear, chaotic deterministic 

processes (where the largest Lyapunov exponent is positive). These and other papers have been criticised 

for the absence of a distributional theory providing a statistical framework for hypothesis testing using the 

calculated Lyapunov exponents. However, Gençay (1996) presents a methodology to compute the 

empirical distributions of Lyapunov exponents using a blockwise bootstrap technique. This methodology 

provides a formal test of the hypothesis that the largest Lyapunov exponent equals some hypothesised 

value, and can be used to test for chaotic dynamics. The test proposed by Gençay (1996) is particularly 

useful in those cases where the largest Lyapunov exponent is positive, but very close to zero. More 

recently, Bask and Gençay (1998) utilise the same statistical framework to provide a test for the presence 

of a positive Lyapunov exponent in an observed time series. The numerical examples show that both 

Gençay (1996) and Bask and Gençay (1998) test statistics behave well in small samples. Finally, Bask 

(1998), using the test suggested by Bask and Gençay’s (1998) test, finds evidence that some exchange 

rates can be characterised by deterministic chaos.  

 

Despite the growing interest on the econometric literature aimed to distinguish between non-

linear deterministic processes and non-linear stochastic processes, there is still a lot of disagreement and 

controversy about the available results. A key paper in this area is Barnett et al. (1997), where some data 

series were simulated from different generating models in order to evaluate the behaviour, both for large 

and small samples, of five highly regarded tests for nonlinearity or chaos. The tests considered in that 

paper are the Hinich bispectral test (Hinich,1982), the BDS test (Brock et al., 1996), the NEGM test 

(Nychka et al., 1992), the White test (White, 1989), and the Kaplan test (Kaplan, 1993). The results about 
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the power function of some of such tests proved to be rather surprising , since none of them had the 

ability to isolate the origins of the nonlinearity or chaos to be within the structure of the economy. 

 

The aim of this paper is to propose a new test for the presence of chaos, based on the behaviour 

of the estimated Lyapunov exponents, for different sample sizes. As we shall try to illustrate, while the 

largest exponent of a chaotic process is invariant with respect to sample size, the largest Lyapunov 

exponent of a stochastic process is not. Therefore, we suggest testing chaotic dynamics by estimating the 

empirical distributions of the largest Lyapunov exponents for different subsamples and comparing their 

means. The proposed new test shows a strong power against stochastic processes, hence providing further 

refinement over those of Gençay (1996) and Bask and Gençay (1998). 

 

The rest of the paper is organised as follows. Section 2 presents the statistical framework used in 

the paper. Section 3 discusses the stability of the largest Lyapunov exponent with sample size. Section 4 

proposes the new test for distinguishing chaos from random behaviour. Section 5 reports the results of 

applying our test to several chaotic processes, as well as to the simulated data used in the single-blind 

controlled competition performed by Barnett et al. (1997). Section 6 presents a comparison with Bask and 

Gençay’s (1998) test. Finally, Section 7 provides some concluding remarks. 
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2. A statistical framework for testing chaotic dynamics via Lyapunov exponents 

 

 

In order to examine the properties of deterministic dynamical system we make use of ergodic 

theory, since it provides a statistical framework where different degrees of complexity of attractors and 

motions can be distinguished [see Eckmann and Ruelle (1985) for a survey]. Furthermore, ergodic theory 

allows us to describe the time averages of a dynamical system and to consider that transients become 

irrelevant. Once transients are over, the motion of the dynamical system settles typically near a subset of 

nℜ , called an attractor. In the particular case of dissipative systems, where the phase-space volumes are 

concentrated by the time evolution, the volume occupied by the attractor is in general very small in 

relation to the phase space. Even if a system contracts its volume, it does not mean that its length is 

contracted in all directions: some directions may be stretched and some directions contracted. This 

implies that, even in a dissipative system, the final motions may be unstable within the attractor. This 

instability usually manifests itself in sensitive dependence on initial conditions, which means an 

exponential separation of orbits (as time goes on) of points that were initially very close each other on the 

attractor. In this case, we say that the attractor is a strange attractor and that the system is chaotic. 

 

Statistical averages can be computed either in terms of time averages or space averages. Let us 

consider, for simplicity, a discrete dynamical system of dimension n )x(Fx t1t
rrr =+ , where 

nn:F ℜ→ℜ
r

 is a vectorial differentiable function. The time average of a function ϕ  along a 

(forward) trajectory ixr  with initial condition 0xr , of a discrete dynamical system is defined by 

)x(
N
1

lim
1N

1i
i

N
∑

−

=∞→

rϕ  

In a similar way for a continuous flow tφ , arising from a continuous dynamical system 

)x(F
dt
xd rrr

=  the time average of a function along a (forward) trajectory is  

∫
∞→

T

0
t

T
dt))x((

T
1

lim φϕ  

 

The time averages often depend on init ial conditions. However, when the dynamical system has 

an attractor, all trajectories have the same statistical properties. 

 

A measure of complexity in chaotic motion may be obtained by analyzing the sensitivity of the 

dynamical behaviour to initial conditions given by two infinitely close initial states. For chaotic systems 

nearby points in the phase space separate exponentially with time. Let us illustrate the basic idea by 

means of a discrete dynamical system of dimension n, )(1 tt xFx
rrr

=+ . In order to examine the stability of 
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the trajectories of the system, let us consider how the system amplifies a small difference between the 

initial conditions 0xr  and 0x′r : 

)xx)(x(FD)x(F)x(Fxx 000
T

0
T

0
T

TT ′−≅′−=′− rrrrrrrrrr  

where )...))x(F(...F(F)x(F 00
T rrrrrr

= denotes the T successive iterations of the dynamical system starting 

from the initial condition 0xr , and where )x(FD 0
T rr

 is the Jacobian of function )x(F rr
. 

 

By the rule of the chain, we have 

)x(FD...........)x(FD)x(FD)x(FD 02T1T0
T rrrrvrrr

−−=  

 

In this context, the Lyapunov exponents are defined as follows (Guckenheimer and Holmes, 

1990): Let us consider the family of subspaces )n(
i

)2(
i

)1(
i V.....VV ⊃⊃⊃ in the tangent space at )x(F i rr

 

and the numbers n21 ..... λλλ ≥≥≥  with the properties that: 

(1) )j(
1i

)j(
i V)V(FD +=

r
 

(2) j1nVdim )j(
i −+=  

(3) j0
TT

T
||)x()FD(*)FD(||ln

T
1

lim λ=⋅
∞→

rrr
 for all )1(

0
)(

00
−−∈ jj VVxr , where *)( TFD

r
  

is the transpose of TFD
r

 

 

Then, the real numbers jλ  are called the Lyapunov exponents of F
r

at 0xr . Lyapunov exponents 

offer information on how orbits on the attractor move apart (or together) given the evolution of dynamics. 

One can also define them by the rate of stretching or shrinking of line segments, areas, and various 

dimensional subvolumes in the phase space. Line segments grow or shrink as 1te λ , areas as )21(te λλ +  

and so forth. If one or more of the Lyapunov exponents are positive, then we have chaos in the motion of 

the system. The sum of the Lyapunov exponents is negative ( 0...... n21 <+++ λλλ ) for dissipative 

systems [see Abarbanel (1996)]. 

 

The possibility of obtaining, in a deterministic dynamical system, Lyapunov exponents that are 

representative of short-run divergences in trajectories with very closed initial points is based on 

Oseledec’s (1968) multiplicative ergodic theorem. If we assume that there exists an ergodic measure of 

the system, this theorem justifies the use of arbitrary phase space directions when calculating the largest 

Lyapunov exponent. The Lyapunov exponents have then a mean in a global sense, allowing to 

characterize the complexity of a deterministic dynamical system of dimension n simply by n real 

numbers. 
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Oseledec’s (1968) multiplicative ergodic theorem states that, under wide general conditions for 

function F
r

, the limit of expression (3) does exist for almost all 0xr (with respect to the invariant measure 

µ) and is independent of the initial condition 0xr considered (except for a set of null measure). Therefore, 

the multiplicative ergodic theorem implies that the Lyapunov exponents are invariant numbers  

representing “globally” the complexity of the dynamical system under study, independently of the initial 

condition considered.  

 

Oseledec theorem is based on the ergodic theory of deterministic dynamical systems and justifies 

the use of arbitrary phase space directions when calculating the largest Lyapunov exponents. 

Nevertheless, as both Whang and Linton (1999) and Tong (1990) point out, Lyapunov exponents can be 

interpreted within the standard non-linear time series framework as a measure of local stability and is of 

interest even outside from any direct connection with deterministic chaos. 

 

Within the theory of dynamical systems, a chaotic system is characterised by globally bounded 

trajectories in the phase space with a positive largest Lyapunov exponent, while, in theory, a white noise 

process has an infinite largest Lyapunov exponent (see Schuster, 1988).  

 

Nevertheless, in practical implementations, using finite time series, any standard algorithm for 

calculating the largest Lyapunov exponent will find a finite, positive value for this exp onent for a random 

process. Therefore, the largest Lyapunov exponent on its own is not able to distinguish between a chaotic, 

non-linear deterministic process and a random process. This problem is especially relevant in financial 

time series, where non-linear stochastic processes, such as GARCH processes, are usually postulated as 

alternative models to the chaotic behaviour [see, e. g., Hsieh (1991)]. 

 

Gençay (1996) proposed a statistical framework for testing chaotic dynamics using a moving 

blocks bootstrap procedure. 

 

Consider a sequence { }N21 X...,,X,X  of weakly dependent stationary random variables, being 

{ }N21 x...,,x,x  a time series realisation of such a stochastic process. According to Künsch (1989) and 

Liu and Singh (1992), the distribution of certain estimators of interest can be consistently constructed by 

applying moving blockwise bootstrap. Let { }1dt1tt
d
t x...,,x,xB −+−=  denote a moving block of d 

consecutive observations. For a time series of N elements, we can form a set }B,...,B{ d
1dN

d
1 +− of blocks 

with length d. Let us consider k=int(N/d) [where int() denotes the integer part], by resampling with 

replacement of k  blocks denoted by }B,....,B{ d
ki

d
1i

, we will form the bootstrap sample. 

 

In order to obtain the sample distribution of the largest Lyapunov exponent maxλ , we will repeat 

this procedure to construct a sequence of sub-families of k  blocks taken with replacement from the family 

of d-dimensional blocks }B,....,B{ d
1dN

d
1 +− , that can be generated with the time series { }N21 x...,,x,x . 
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For each subfamily of k  blocks, we can apply some standard procedure to compute for the largest 

Lyapunov exponent max
~λ  by taking the pairs of nearest neighbours from each subfamily of blocks. 

Repeating this process a large number of times, we will obtain the empirical distribution of the largest 

Lyapunov exponent max
~λ . 

 

There are several suitable estimation methods in order to obtain Lyapunov exponents based on 

kernels, nearest neighbors, splines, local polynomials and neural nets [see Härdle and Linton (1994) for a 

general discussion]. McCaffrey et al. (1992) distinguish two classes of methods for estimating the largest 

Lyapunov exponent maxλ : (i) Direct methods like Wolf et al.‘s (1985), which assume that the initial 

divergence )xx( 00 ′− rr
 grows at the exponential rate given by maxλ ; and (ii) Jacobian methods, where 

data are used to estimate the Jacobians, with maxλ  computed from the estimated Jacobians, like those 

proposed by MacCaffrey et al. (1992) or Gençay (1996). On the other hand, Gençay and Dechert (1992), 

Gençay and Dechert (1996) and  Dechert and Gençay (2000), have studied the topological invariance of 

the Lyapunov Exponent estimator from observer dynamics. 

 

As Ziehmann et al. (1999) pointed out, a bootstrap algorithm must be used with caution if 

Lyapunov exponents estimates rely on the product of matrices because matrix multiplication does not 

commute, except in one dimension.. In order to avoid such complications with the product of Jacobians 

along the trajectory, we use a simple direct method for estimating the largest Lyapunov exponent maxλ  of 

a time series proposed by Rosenstein et al. (1993). Given that the divergence between the nearest 

neighbours takes place at a rate approximated by the largest Lyapunov exponent, Rosenstein et al. suggest 

to choose a pair of neighbours as nearby initial conditions for different trajectories, and to estimate maxλ  

by averaging exponential divergences of initially close state-space trajectories. 

 

In the method proposed by Rosenstein et al. (1993), there are two key parameters to estimate the 

largest Lyapunov exponent: the embedding dimension (that will be the moving-block length for the 

moving blocks bootstrap procedure) and the number of discrete-time steps allowed for divergence 

between nearest neighbors in the phase space. As shown in Rosenstein  et al. (1993), the value of the 

largest Lyapunov exponent can be biased with these two parameters. 
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3. Stability of largest Lyapunov exponents with the sample size for chaotic processes  

 

From a theoretical point of view, the reason for the stability of the largest Lyapunov exponent 

with respect to the sample size can be found in Oseledec’s (1968) theorem. This theorem allows us to 

affirm that, for a large enough sample size, these exponents will converge to some stable values 

associated with the complexity of the attractor. 

 

This theorem assures, for chaotic time series, the possibility of making short-run forecasts based 

on the reconstructed phase space. The Lyapunov exponents are nothing but a measure (in exponential 

scale) of the mean forecast errors using the nearest neighbour points in the phase space. However, when 

analysing a time series generated by a non-deterministic stochastic process, nothing guarantees the 

stability of the Lyapunov exponents. Oseledec’s (1968) theorem only affects deterministic processes via 

ergodic theory. For a stochastic process, as the number of observations increases, the variability of the 

largest Lyapunov exponent will be greater and, therefore, the largest Lyapunov exponent will also 

increase without limit with the sample size. 

 

As we shall see, our simulations show an essential difference between chaotic and stochastic 

processes via Lyapunov exponents. If we want to reconstruct trajectories of a time series in a phase space 

that are sampled from a stochastic process, there is not guarantee of convergence in any algorithm 

towards the largest Lyapunov exponent, because the Lyapunov exponents are not necessarily stable and 

independent of the initial conditions and sample size. For stochastic processes, the algorithm is only able 

to estimate local Lyapunov exponents. Local Lyapunov exponents are a measure of local stability of the 

process and may be highly dependent on the sample size and the initial condition considered. 

 

Our simulations are based on different stochastic and chaotic processes. First of all, and 

following Barnett et al. (1997), let us consider samples of size 380 and 2000 observations of the following  

five models: 

 

(i) A fully deterministic, chaotic Feigenbaum recursion of the form: 

)y1(y57.3y 1t1tt −− −= , 

where the initial condition was set at 7.0y0 = 1. 

                                                 
1 The Feigenbaum series proposed in Barnett e t al. (1997) [i. e., 7.0y,57.3c,)y1(ycy 01t1tt ==−= −− ] is 

really special as can be seen in Fernández-Rodríguez et al. (2000). The problem is that the parameter 57.3c =  of this 

map is too close to ....569946.3c =∞ , the value of the parameter where the period )n(2n ∞→  cycle first occurs [see 

Jackson, 1989]. For ∞< cc  we have n2  cycles and for 4cc ≤≤∞ the map displays a rich variety of behaviours [see 

Jackson, 1989]. For ∞> cc , except for the narrow bands where the solutions would oscillate again according  to an n-

cycle (e.g. 86.3c83.3for3n <<= ), there is an infinite number of possible values for ty  that never repeats itself. 

For 569946.3c57.3c ≅≅= ∞  used by Barnett et al. (1997), the sequence generated by the Feigenbaum 

map is much less "regular" than a sequence with a finite period of repetition. Nevertheless, the ∞c  sequence has an 

important difference with true chaotic behaviour. The reason is that the ∞c  sequence is still marginally predictable in 
the sense that if two initial values are close enough to each other, the two sequences generated by Feigenbaum map, 



 10

(ii) A GARCH process of the following form: 

t
2/1

tt uhy = , 

where th  is defined by 

1t
2

1tt h8.0y1.01h −− ++= , 

with 1h0 =  and 0y0 = . 

 

(iii) A nonlinear moving average (NLMA) process: 

2t1ttt uu8.0uy −−+= . 

(iv) An ARCH process of the following form: 

t
2/12

1tt u)y5.01(y −+= , 

with the value of the initial observations is set at 0y0 = , and  

 

(v) An ARMA model of the form: 

1tt2t1tt u3.0uy15.0y8.0y −−− +++= , 

 with 1y0 =  and 7.0y1 = . 

 

With the four stochastic models, the white noise disturbances, ut, are sampled independently 

from a standard normal distribution. Note that of the five generating models, only model (i) is chaotic. 

 

In order to provide more and stronger evidence supporting our claim on the observed invariance 

property of the largest Lyapunov exponent holds for all chaotic processes, we also consider the Hénon 

map and the Lorenz attractor. 

 

(vi) The Hénon (1976) map is described by the following system:  

t1t

t
2
t1t

x3.0y

yx4.11x

=
+−=

+

+  

with the initial points 5.0x0 =  and 2.0y0 = . 

 

(vii) The well-known Lorenz (1963) attractor is the three-dimensional continuous-time system: 

z
3
8

xyz

y)z28(xy

)xy(10x

−=

−−=
−=

&

&

&

. 

                                                                                                                                               
for these two initial conditions, will be very closed to each other even after a very long time. This is so because, at 

∞= cc , the infinite cycle is stable. 
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Lorenz´s system was solved using a straightforward fourth-order Runge-Kutta method. 

Considering the average mutual information )T(I  for the signal )t(x , the minimum of this function is at 

T=10; following Abarbanel (1996), a time lag 10=τ  was used in order to obtain a series 

2000...,,1n,)nt(x 0 =+ τ  as is usual for the phase reconstruction. 

 

We calculated the largest Lyapunov exponent applying the algorithm proposed by Rosenstein et 

al. (1993) to the time series generated by these models for each sample size between 100 and 2000 taken 

by groups of a hundred (i. e., 100, 200, 300,...2000). We also consider different embedding dimensions 

from d=2 to 6. Finally, regarding the number of discrete-time steps allowed for divergence between 

nearest neighbours, we take 2i = . 

 

Figures 1 to 5 display the results of estimating the largest Lyapunov exponents maxλ̂  for the 

simulated data series used in Barnett et al. (1997) competition and for the two new chaotic series (Hénon 

map and Lorenz attractor) for different sample sizes. 

 

[Figures 1 to 5, Appendix C] 

 

As can be seen, as the embedding dimension increases, the estimated maxλ̂  from this algorithm 

is gradually downward-biased. 

 

Given the evidence presented in Figures 1 to 5, the existence of a positive largest Lyapunov 

exponent does not allow to infer the presence of chaos in a given time series. However, these figures 

show an interesting and essential difference between deterministic and stochastic processes. While the 

largest Lyapunov exponent, in the case of the deterministic models, stabilises (in some cases even 

decreases) as the sample size increases, for all the stochastic processes, the largest Lyapunov exponent 

increases with the sample size. This behaviour remembers the well-known process of saturation of the 

correlation dimension, in a chaotic time series, when the embedding dimension increases. As a matter of 

fact, this is the base of the test proposed by Grassberger and Procaccia (1983) to detect deterministic 

chaos. 
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4. A new test for distinguish chaos from random behaviour via Lyapunov exponents 

 

In this section, we propose a new test, based on the stability of the largest Lyapunov exponent 

from different sample sizes, to detect chaotic dynamics in time series. As we will see, this new test has a 

high power against different stochastic alternatives, both linear and nonlinear.  

 

This new test has a deterministic process as the null hypothesis, while the alternative hypothesis 

is that of a stochastic process (i. e., high-dimensional chaos), since randomness can be viewed as infinite-

dimensional chaos.   

 

Let be a time series of length N, { }N21 x,.....,x,x . Let us divide the time series into different 

subsamples { }NrT1rT2T1T21 xx,....,x,....,x,....,x,....x,x =− , and consider an empirical distribution of 

the largest Lyapunov exponent from 100 moving block bootstrap of such time series for the different 

subsamples { }iT21 x,.....,x,x , for i=1,....,r. Let )T( imaxλ  be the mean of distributions of the 100 largest 

Lyapunov exponents computed from those sample sizes. Given that we have shown that the largest 

Lyapunov exponent stabilises when increasing the sample size in a deterministic process, but it increases 

with the sample size in a stochastic process, we propose using )T( imaxλ  to test for the stability of the 

largest Lyapunov exponent.   

 

The equality of means may be tested recalling the traditional econometric test of lineal 

independence between the mean of largest Lyapunov exponents )T(maxλ , in every sample size, and the 

sample size T. To that end, we have performed a linear regression of 

NT,......,TTforT)T( r1T10max ==++= εααλ ,   (1) 

so that the estimated parameter 1α̂  can be used to test if the largest Lyapunov exponent does not increase 

with sample size, implying a underlying deterministic process.   

 

The null hypothesis H0 and the alternative hypothesis H1 are formulated as follows:  

H0 : 01 ≤α  (deterministic process)  

H1 : 01 >α  (stochastic process) 
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5 Applications  

 

In this section we test for deterministic chaos using the simulated data from the seven models 

presented in the previous section. In all cases, the largest Lyapunov exponents were estimated using the 

algorithm proposed in Rosenstein et al. (1993). 

 

Following Barnett et al. (1997), we compute our tests twice: for small samples of 380 

observations and for large samples of 2000 observations. For the 380 observations case, the subsample 

sizes are as follows: 

.380T,358T,337T,316T,295T

,274T,253T,232T,211T,190T

109876

54321

=====
=====

 

 

For the 2000 observations case, the subsample sizes are as follows: 

.2000T,1900T,1800T,1700T,1600T

,1500T,1400T,1300T,1200T,1100T,1000T

1110987

654321

=====
======

 

 

In order to implement our test, we compute the largest Lyapunov exponent for small subsample 

sizes and large subsample sizes for moving-block lengths d between 2 and 6.  

 

Tables 1 to 7 [Appendix A] show the results of our regression thesing for the stability of the 

mean largest Lyapunov exponent )T(maxλ  (for a sample of  100 largest Lyapunov exponents estimated 

by bootstraping ) when the sample size T increases.  

 

As can be seen, if the 1% marginal significance level is used, for the Feigenbaum (Table 1) and 

Hénon (Table 6) series the test correctly distinguish deterministic from random behaviour for sample 

sizes of 380 and 2000 observations. Regarding the Lorenz attractor (Table 7), for T=380, the tests 

incorrectly reject the null hypothesis for small (d=2) and large (d=6) embedding dimensions, while for 

T=2000, it only incorrectly rejects the null hypothesis for d=2. Finally, note that the test correctly rejects 

the null hypothesis for all the stochastic processes (see Tables 2 to 5).  

 

 [ Tables 1 to 7] 

 

Therefore, our simulation results suggest that our test correctly reject chaos for the GARCH, 

NLMA, ARCH and ARMA stochastic processes in small and large samp le sizes and for all embedding 

dimensions. On the contrary, our test does not reject chaos in the case of the best-known chaotic 

processes for moving-block lengths from 3 to 5. According to these results, it appears that a strategy of 

using d =3 , d=4 or d= 5 could be recommended for practitioners when applying our test.  
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6.  Comparison of the power performance of the new test with Bask and Gençay’s (1998)  

 

Bask and Gençay (1998) proposed using a moving-blocks bootstrap procedure to test for the 

presence of a positive Lyapunov exponent in an observed stochastic time series. The null hypothesis H0 

and the alternative hypothesis H1 are formulated as follows:  

H0 : 0max =λ  (no chaotic process)  

H1 : 0max >λ  (chaotic process)  

where maxλ  is the largest Lyapunov exponent. 

 

The test scheme consists of the following steps: 

i) Reconstruct the phase space of the time series { }N21 x,.....,x,x  with a embedding dimension d 

and estimate the largest Lyapunov exponent maxλ̂  using any existing algorithm. Each d-history 

of the reconstructed phase space will be considered as a block, obtaining in this way a sequence 

of blocks }B,....,B{ d
1dN

d
1 +− .  

ii) Resample, with replacement, k  blocks of the reconstructed phase space, being k=int(N/d). The 

subfamily of blocks }B,....,B{ d
ki

d
1i

constitutes the bootstrap sample. 

iii) From this subfamily, estimate the largest Lyapunov exponent max
~λ  for the time series under 

study and calculate maxmax
ˆ~ λλ − . 

iv) Repeat steps ii)-iii) a large number of times to construct an empirical distribution of 

maxmax
ˆ~ λλ −  

v) Construct a one-sided 97,5% confidence interval by calculating the critical value as 

( )%5.97qˆ
max −λ , following from ( ){ } 975.0%5.97qˆ~Pr maxmax =<− λλ , where ( )%5.97q  

is the quartile of the distribution in step iv) 

vi) If ( ) 0%5.97qˆ
max >−λ , then the null hypothesis is rejected, which means that the dynamics is 

chaotic. 

 

Tables 8 to 14 show the results of applying the test proposed by Bask and Gençay (1998) to the 

simulated data examined in the previous section for moving blocks of different sizes (i. e., d=2 to 6) and 

for different sample sizes (T=380 and 2000). 

  

[Tables 8 to 14, Appendix B] 

 

As can be seen, this test incorrectly rejects the null the hypothesis, not rejecting the alternative 

hypothesis 0max >λ  in any of the stochastic processes considered in this paper (GARCH, NLMA, ARCH 

and ARMA). On the contrary, the test does correctly reject the null hypothesis, not rejecting the 

alternative hypothesis  for the chaotic processes (Feigenbaum, Hénon and Lorenz). 
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7.   Concluding remarks 

 

Empirical research on detection of chaotic behaviour has expanded rapidly, but results have 

tended to be rather inconclusive, due to the lack of appropriate testing methods. 

 

The general practice has been to take the existence of a positive Lyapunov exponent as an 

indication that the system is chaotic. However, this condition is not sufficient for the detection of chaos, 

and does not help us to distinguish a chaotic process from a stochastic one. Indeed, any standard 

algorithm for calculating the largest Lyapunov exponent will find a finite, positive value for this 

exponent, both for  chaotic as well as for  stochastic processes. 

 

In this paper, we combine the bootstrap statistical framework for hypothesis testing using the 

computed Lyapunov exponents (Gençay, 1996), with the ergodic theory of deterministic dynamical 

systems in order to develop a new test to detect chaotic dynamics in time series. The new test is based on 

the stability of the mean in the distributions of the largest Lyapunov exponent estimated from different 

sample sizes, which is guaranteed by Oseledec's (1968) theorem. This theorem provides a strong feature 

of deterministic processes that is not shared by stochastic processes. We show that, while for (linear and 

nonlinear) stochastic processes the largest Lyapunov exponent increases with the sample size, for chaotic 

series the largest Lyapunov exponent is invariant when increasing the sample size. We compute the 

largest Lyapunov exponent using a robust version of the algorithm proposed by Rosenstein et al. (1993), 

considering the mean of divergences between pairs of close trajectories. 

 

We have applied this new test to the simulated data used in the single-blind controlled 

competition among tests for nonlinearity and chaos generated  by Barnett et al. (1997), as well as several 

chaotic series, both for small and large samples (380 and 2000 observations, respectively). The results 

suggest that the new test has a high discriminatory power against interesting stochastic alternatives, both 

linear and nonlinear (GARCH, NLMA, ARCH and ARMA). 

 

Indeed, the proposed new test is able to correctly distinguish deterministic from random 

behaviour for sample sizes of 380 and 2000 observations, and for moving-block lengths from 3 to 5. 

However, for extreme values of the block size (2 and 6) our test incorrectly rejects the null hypothesis for 

sample size of 380 observations for one of the three chaotic processes considered. For sample size of 

2000 observations our test does not correctly reject the null for all chaotic processes in almost every block 

size lower than 7, except for the Lorenz series in block size 2. 

 

Finally, our test for stability of largest Lyapunov exponent correctly rejects the null hypothesis of 

determinism for all the stochastic process (GARCH, NLMA, ARCH and ARMA), regardless the sample 

size and for all block size considered. On the contrary, our test does not reject chaos in the case of the 

best-known chaotic processes for block size from 3 to 5. 
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When comparing the results from our test with those from the competing test proposed by Bask 

and Gençay (1998), we conclude that the latter cannot correctly distinguish between chaotic and 

stochastic processes, although it  correctly rejects the null hypothesis (of no chaos) for the chaotic 

processes.  

 

Therefore, the results presented in this paper suggest that our test improves over several tests 

available in the literature, since it has the ability to distinguish between deterministic or stochastic 

processes. In addition, our test behaves well in small samples. 
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Appendix A 

 

Table 1: Test for equality of the largest Lyapunov exponents from different sample sizes. 

Feigenbaum process (1) (2).  

Sample size T=380 (3) T=2000 (3) 

Coefficients of linear regression 
1α̂  1α̂  

Block size=2 -0.0001 
(-3.5657) 

-0.0000 
(-1.8612) 

Block size=3 -0.0001 
(-2.0933) 

-0.0000 
(-0.2914) 

Block size=4 -0.0000 
(-0.3795) 

-0.0000 
(-2.1983) 

Block size=5 -0.0000 
(-1.1709) 

-0.0000 
(-1.1001) 

Block size=6 0.0000 
(0.1832) 

0.0000 
(0.5617) 

Notes:    

(1) OLS estimation of  the linear regression TTT εααλ ++= 10max )(   with t-ratio in brackets. 

(2) a denote rejection of the null hypothesis H0 : 01 ≤α  (deterministic process)  at the 1% level. 
(3) The critical value for the t-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821). 
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Table 2: Test for equality of the largest Lyapunov exponents from different sample sizes. 

GARCH process (1) (2).  

Sample size T=380 (3) T=2000 (3) 

Coefficients of linear regression 
1α̂  1α̂  

Block size=2 0.0010  
(7.4283 a) 

0.0001 
(21.3217 a) 

Block size=3 0.0007  
(9.6595 a) 

0.0001  
(14.8049 a) 

Block size=4 0.0005  
(8.4568 a) 

0.0001  
(13.7545 a) 

Block size=5 0.0006  
(8.3375 a) 

0.0000  
(7.4032 a) 

Block size=6 0.0004  
(9.8683 a) 

0.0000  
(15.7122 a) 

Notes:    

(1) OLS estimation of  the linear regression TTT εααλ ++= 10max )(   with t-ratio in brackets. 

(2) a denote rejection of the null hypothesis H0 : 01 ≤α  (deterministic process)  at the 1% level. 

(3) The critical value for the t-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821). 
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Table 3: Test for equality of the largest Lyapunov exponents from different sample sizes. 

NLMA process (1) (2).  

Sample size T=380 (3) T=2000 (3) 

Coefficients of linear regression 
1α̂  1α̂  

Block size=2 0.0011  
(13.2308 a) 

0.0002  
(30.3189 a) 

Block size=3 0.0004  
(5.5576 a) 

0.0001  
(36.2851 a) 

Block size=4 0.0002  
(3.6952 a) 

0.0001  
(21.8271 a) 

Block size=5 0.0003  
(11.6596 a) 

0.0001  
(15.0050 a) 

Block size=6 0.0004  
(9.5941 a) 

0.0001  
(9.6585 a) 

Notes:    

(1) OLS estimation of  the linear regression TTT εααλ ++= 10max )(   with t-ratio in brackets. 

(2) a denote rejection of the null hypothesis H0 : 01 ≤α  (deterministic process)  at the 1% level. 

(3) The critical value for the t-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821). 
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Table 4: Test for equality of the largest Lyapunov exponents from different sample sizes. 

ARCH process (1) (2).  

Sample size T=380 (3) T=2000 (3) 

Coefficients of linear regression 
1α̂  1α̂  

Block size=2 0.0093  
(11.0229 a) 

0.0001 
(12.4659 a) 

Block size=3 0.0001  
(13.9478 a) 

0.0001 
(18.5681 a) 

Block size=4 0.0001  
(9.7114 a) 

0.0001 
(11.5503 a) 

Block size=5 0.0004  
(8.1143 a) 

0.0000 
(10.4566 a) 

Block size=6 0.0003  
(8.9532 a) 

0.0001 
(17.8911 a) 

Notes:    

(1) OLS estimation of  the linear regression TTT εααλ ++= 10max )(   with t-ratio in brackets. 

(2) a denote rejection of the null hypothesis H0 : 01 ≤α  (deterministic process)  at the 1% level. 

(3) The critical value for the t-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821). 
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Table 5: Test for equality of the largest Lyapunov exponents from different sample sizes. 

ARMA process (1) (2).  

Sample size T=380 (3) T=2000 (3) 

Coefficients of linear regression 
1α̂  1α̂  

Block size=2 0.0008 
(16.0477 a) 

0.0001 
(37.3805 a) 

Block size=3 0.0007 
(6.8056 a) 

0.0001 
(13.3807 a) 

Block size=4 0.0005 
(4.6824 a) 

0.0001 
(15.2237 a) 

Block size=5 0.0002 
(3.6430 a) 

0.0001 
(15.5015 a) 

Block size=6 0.0003 
(6.4041 a) 

0.0001 
(10.3826 a) 

Notes:    

(1) OLS estimation of  the linear regression TTT εααλ ++= 10max )(   with t-ratio in brackets. 

(2) a denote rejection of the null hypothesis H0 : 01 ≤α  (deterministic process)  at the 1% level. 

(3) The critical value for the t-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821). 
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Table 6: Test for equality of the largest Lyapunov exponents from different sample sizes. 

Hénon process (1) (2).  

Sample size T=380 (3) T=2000 (3) 

Coefficients of linear regression 
1α̂  1α̂  

Block size=2 0.0001 
(1.7765 ) 

0.0000  
(2.5822) 

Block size=3 0.0000 
(0.2710 ) 

0.0000 
(1.7611) 

Block size=4 -0.0003 
(-5.9803 ) 

-0.0000  
(-2.4872) 

Block size=5 0.0000 
(1.5134 ) 

0.0000 
(0.8518) 

Block size=6 0.0001  
(2.1635) 

0.0000 
(0.0867) 

Notes:    

(1) OLS estimation of  the linear regression TTT εααλ ++= 10max )(   with t-ratio in brackets. 

(2) a denote rejection of the null hypothesis H0 : 01 ≤α  (deterministic process)  at the 1% level. 

(3) The critical value for the t-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821). 
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Table 7: Test for equality of the largest Lyapunov exponents from different sample sizes. 

Lorenz process (1) (2).  

Sample size T=380 (3) T=2000 (3) 

Coefficients of linear regression 
1α̂  1α̂  

Block size=2 0.0005  
(7.1435 a) 

0.0001  
(10.4912 a) 

Block size=3 0.0001  
(2.1601) 

0.0000 
(0.9722) 

Block size=4 -0.0001  
(-1.0223) 

0.0000 
(0.3579) 

Block size=5 0.0002 
(1.9083) 

0.0000  
(2.3860) 

Block size=6 0.0004  
(4.1590 a) 

0.0000  
(2.2246) 

Notes:    

(1) OLS estimation of  the linear regression TTT εααλ ++= 10max )(   with t-ratio in brackets. 

(2) a denote rejection of the null hypothesis H0 : 01 ≤α  (deterministic process)  at the 1% level. 

(3) The critical value for the t-statistic at the 1% level for T=380 (T=2000) is 2.896 (2.821). 
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Appendix B 

 

Table 8: Results of Bask and Gençay (1998)´s test. Feigenbaum process. 

Sample size T=380 (1) T=2000 (1) 

 
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  

Block size=2 0.2599 0.1850 0.1943 0.2007 0.2714 0.1984 0.2007 0.2073 

Block size=3 0.2598 0.1612 0.1762 0.1818 0.2699 0.1853 0.1946 0.1958 

Block size=4 0.1629 0.0833 0.0838 0.0850 0.1692 0.0775 0.0813 0.0877 

Block size=5 0.0494 -0.1023 -0.0968 -0.0883 0.0514 -0.1042 -0.1012 -0.0979 

Block size=6 0.0463 -0.1198 -0.0894 -0.0795 0.0482 -0.1054 -0.0966 -0.0787 

Note: 

(1) 1λ̂  is an estimation of the largest Lyapunov exponent, and q(.) is the quartile for the empirical distribution formed by calculating 11 ˆ~ λλ − . 

              1
~λ  is the largest exponent from the bootstrap sample. The number of boostrap values is 100. 
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Table 9: Results of Bask and Gençay (1998)´s test. Garch process. 

Sample size T=380 (1) T=2000 (1) 

Garch 
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  

Block size=2 1.3036 1.2115 1.2153 1.2248 1.7089 1.6447 1.6618 1.6676 

Block size=3 0.8173 0.7028 0.7554 0.7575 1.0555 1.0133 1.0250 1.0275 

Block size=4 0.5901 0.5135 0.5208 0.5264 0.7447 0.6998 0.7092 0.7116 

Block size=5 0.4318 0.3362 0.3558 0.3874 0.5323 0.4982 0.5001 0.5037 

Block size=6 0.3090 0.2280 0.2471 0.2569 0.4081 0.3657 0.3779 0.3845 

Note: 

(1) 1λ̂  is an estimation of the largest Lyapunov exponent, and q(.) is the quartile for the empirical distribution formed by calculating 11 ˆ~ λ−λ . 

 1
~λ  is the largest exponent from the bootstrap sample. The number of boostrap values is 100. 
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Table 10: Results of Bask and Gençay (1998)´s test. Nlma process. 

Sample size T=380 (1) T=2000 (1) 

 
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  

Block size=2 1.2835 1.1745 1.2085 1.2152 1.6693 1.5954 1.6148 1.6191 

Block size=3 0.7968 0.6887 0.7299 0.7484 1.0579 1.0070 1.0206 1.0245 

Block size=4 0.5234 0.4419 0.4465 0.4589 0.7364 0.6962 0.7041 0.7091 

Block size=5 0.4048 0.2908 0.3442 0.3567 0.5364 0.4868 0.4947 0.5001 

Block size=6 0.3188 0.2474 0.2568 0.2689 0.4070 0.3682 0.3780 0.3832 

Note: 

(1) 1λ̂  is an estimation of the largest Lyapunov exponent, and q(.) is the quartile for the empirical distribution formed by calculating 11 ˆ~ λλ − . 

 1
~λ  is the largest exponent from the bootstrap sample. The number of boostrap values is 100. 
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Table 11: Results of Bask and Gençay (1998)´s test. Arch process. 

Sample size T=380 (1) T=2000 (1) 

 
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  

Block size=2 1.3125 1.1971 1.2039 1.2198 1.6506 1.5757 1.5943 1.6003 

Block size=3 0.8143 0.7192 0.7375 0.7525 1.0706 1.0228 1.0324 1.0350 

Block size=4 0.5571 0.4444 0.4799 0.4974 0.7440 0.6878 0.6978 0.7142 

Block size=5 0.4042 0.3196 0.3318 0.3463 0.5411 0.5029 0.5050 0.5089 

Block size=6 0.2954 0.2172 0.2337 0.2426 0.4135 0.3647 0.3724 0.3817 

Note: 

(1) 1λ̂  is an estimation of the largest Lyapunov exponent, and q(.) is the quartile for the empirical distribution formed by calculating 11 ˆ~ λ−λ . 

 1
~λ  is the largest exponent from the bootstrap sample. The number of boostrap values is 100. 
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Table 12: Results of Bask and Gençay (1998)´s test. Arma process 

Sample size T=380 (1) T=2000 (1) 

 
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  

Block size=2 1.1631 1.0760 1.0861 1.0941 1.5186 1.4851 1.4868 1.4911 

Block size=3 0.7374 0.6380 0.6452 0.6625 0.9749 0.9249 0.9408 0.9449 

Block size=4 0.4927 0.4062 0.4227 0.4262 0.7030 0.6599 0.6673 0.6740 

Block size=5 0.3746 0.3023 0.3063 0.3116 0.5351 0.4919 0.4951 0.5004 

Block size=6 0.2958 0.1798 0.2196 0.2287 0.4137 0.3810 0.3893 0.3911 

Note: 

(1) 1λ̂  is an estimation of the largest Lyapunov exponent, and q(.) is the quartile for the empirical distribution formed by calculating 11 ˆ~ λλ − . 

 1
~λ  is the largest exponent from the bootstrap sample. The number of boostrap values is 100. 
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Table 13: Results of Bask and Gençay (1998)´s test. Hénon process 

Sample size T=380 (1) T=2000 (1) 

 
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  

Block size=2 0.4154 0.3005 0.3563 0.3653 0.4407 0.4083 0.4152 0.4158 

Block size=3 0.3686 0.2887 0.2958 0.3041 0.3953 0.3652 0.3713 0.3727 

Block size=4 0.3637 0.2857 0.2980 0.3038 0.3734 0.3404 0.3501 0.3514 

Block size=5 0.3836 0.2971 0.3096 0.3221 0.3853 0.3443 0.3581 0.3603 

Block size=6 0.3825 0.3033 0.3135 0.3270 0.3831 0.3557 0.3598 0.3606 

Note: 

(1) 1λ̂  is an estimation of the largest Lyapunov exponent, and q(.) is the quartile for the empirical distribution formed by calculating 11 ˆ~ λλ − . 

 1
~λ  is the largest exponent from the bootstrap sample. The number of boostrap values is 100. 
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Table 14: Results of Bask and Gençay (1998)´s test. Lorenz process. 

Sample size T=380 (1) T=2000 (1) 

 
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  
1λ̂  Critical value 

%)99(qˆ1 −λ  

Critical value 

%)5.97(qˆ1 −λ  

Critical value 

%)95(qˆ1 −λ  

Block size=2 0.9234 0.7842 0.8067 0.8197 1.2207 1.1520 1.1764 1.1800 

Block size=3 0.6417 0.4788 0.5200 0.5408 0.7427 0.6784 0.6952 0.6999 

Block size=4 0.5010 0.3051 0.3914 0.4071 0.5680 0.4862 0.4953 0.5020 

Block size=5 0.4293 0.2590 0.2908 0.3409 0.4690 0.3900 0.4052 0.4105 

Block size=6 0.3407 0.1932 0.2207 0.2270 0.3869 0.2694 0.3249 0.3277 

Note: 

(1) 1λ̂  is an estimation of the largest Lyapunov exponent, and q(.) is the quartile for the empirical distribution formed by calculating 11 ˆ~ λ−λ . 

1
~λ  is the largest exponent from the bootstrap sample. The number of boostrap values is 100. 
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Appendix C 
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Figure 2: 
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Figure 3: 

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 1 8 0 0 2 0 0 0
0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8
L a r g e s t  L y a p u n o v  e x p o n e n t s  v s .  s a m p l e  s i z e .  E m b e d d i n g  d i m e n s i o n  d = 4

s a m p l e  s i z e

La
rg

es
t 

Ly
ap

un
ov

 e
xp

on
en

ts

f e i g e m b a u m  1

h e n o n

lorenz

g a r c h

n l m a

a r c h

a r m a



 37

Figure 4: 
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Figure  5: 
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