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Resumen 
Negative Binomial distribution has been traditionally used in social sciences in order to model the 

number of claims. This distribution can be obtained as a mixture of Poisson and Gamma distributions. 

When the parameter , the probability of success, is assumed to be unknown, the Beta and Pareto 

distributions are suitable for computing the compound distribution. In this paper, we propose a new 

model of compound binomial distribution by using the Inverse Gaussian distribution in order to model 

the heterogeneity of the population. This distribution has the advantage to be overdispersed and easy 

to implement in a variety of settings. 
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1. Introduction 

Negative Binomial distribution can be obtained as as a mixture of Poisson and Gamma distributions 

and this distribution has been traditionally used in many fields of social sciences. Modelling the 

number of claims in insurance markets or modelling consumption data are two common examples. 

It is usually assumed that the probability  varies from individual to individual and has a prior 

distribution 

p

( )π λ  in the whole population. Traditionally the Beta and Pareto distribution, perhaps by 

mathematical convenience since they are conjugate to the likelihood function in the negative binomial 

distribution, have been used as prior distributions. When the parameter p , the probability of success, 

is assumed to be unknown, the Beta and Pareto distributions are suitable for computing the compound 

distribution (Alanko and Duffy (1996), Chatfield and Goodhardt (1970), Gómez and Vázquez (2003) 

and Shengwang et al. (1999)). The Pareto distribution presents several advantages. First of all it is 

conjugate to the negative binomial distribution, secondly it is unimodal and right skewed and finally it 

has mathematical flexibility for fitting different distribution pattern. As the parameter r , the number 

of success controls the extent of overdispersion of the individual claim distribution, approaches 

infinity the Negative Binomial–Pareto distribution approaches a Negative Binomial distribution 

(Meng and Withmore (1999) and Gómez and Vázquez (2003)). In this paper special attention is paid 

to the choice of the parameter . We propose a new model of compound negative binomial 

distribution by using the Inverse Gaussian distribution. This distribution has thick tails, is unimodal 

and it also supplies the advantage of having closed form expression for the moment generating 

function (Tweedy (1957)). The parameters  and 

p

r λ  determines the extent of overdispersion. The 

larger  and r λ  are, the bigger the degree of overdispersion is.  

The general model is presented in Section 2, where the marginal, the conditional expectation, the 

posterior distribution and some methods of estimation of parameters are showed. Section 3 is devoted 

to the Negative Binomial–Inverse Gaussian compound distribution as a particular example of the 

general model. An application as a particular insurance problem is presented in Section 4. Finally, 

conclusions are presented in Section 5.  
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2. Basic Results 

A random variable Z  has a inverse gaussian distribution if his pdf is given by,  
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 (1) 

where 0, >ψ µ . We will represent ( ),�Z IG µ ψ . If ( ),�Z IG µ ψ , the moment generating 

function is given by,  
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⎡ ⎤

⎛ ⎞⎢ ⎥⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠
⎣ ⎦

= = − − /tZ
ZM t E e tψ µ ψ

µ
.  (2) 

 

Definition 1. We say that a random variable X  has a negative binomial-inverse 

gaussian distribution if admits the stochastic representation:  

 ( −| , =� )X NB r p e λλ  (3) 

 ( ), ,� IGλ µ ψ  (4) 

 

with 0, , >r µ ψ . We will denote this distribution by ( ), ,�X NBIG r µ ψ .  

The next theorem stablishes the basic properties of this new distribution.  

Theorem 1. Let ( ), ,�X NBIG r µ ψ  be a negative binomial-inverse gaussian 

distribution defined in (3)-(4). Some basic properties are:  

a) The probability mass function is given by,  
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 (5) 

with 0 1 2= , , ,x … and 0, , >r µ ψ .  

b) The factorial moment of order  is given by  k
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with   1 2= , ,k …

c) The mean and variance are,  

 [ ]( ) (1) 1= − ,E X r Mλ  (7) 

 2( ) ( ) (2) (1) (1)2 2= + − −var X r r M rM r Mλ λ λ ,  (8) 

 

     where ( )M uλ  is defined in (2).  

Proof. If | ( )−,�X NB r e λλ  and ( ),� IGλ µ ψ , the pdf of X  can be obtained using 

the well-known compound formula,  

 
0

Pr( ) Pr( | ) ( )d
∞

= = = ; ,∫X x X x f ,λ λ µ ψ λ  

where ( ; ,f )λ µ ψ  is the pdf of a inverse gaussian distribution defined in (1). Now, 

the factorial moment of a negative binomial distribution is (see Balakrishnan and 

Nevzorov (2004)):  

 ( )[ ]
( )( ) 1 1 2

( )
Γ +

| = − , =
Γ

k

k
r k

, ,X e k
r

λµ λ … 

Finally, taking mathematical expectations and combining with (2) we obtain (6).  � 

The next theorem proofs the overdispersion of the negative binomial–inverse 

gaussian distribution and compares the moments of the new distribution with a 

negative binomial distribution with the same mean.  
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Theorem 2. Let ( ,� IG )λ µ ψ  be a Inverse Gaussian distribution with pdf (1) and 

. Consider a negative binomial-inverse gaussian 

distribution 

1( [ ( )]−, =% �X NB r p E eλ )

X  defined in (3)-(4). Then:  

1. It is satisfies:  and .  ( ) ( )=%E X E X ( ) ( )> %var X var X

2. .  ( ) ( )>var X E X

Proof. Obviously , and then ( ) 1>E eλ 1 ( )= /p E eλ  is well defined. Now, 

, and from ( ) [ ( )] [ ( ) 1]= | =E X E E X r E eλλ −

|( ) [ ( )] [ ( )]= | +var X E var X var E Xλ λ , we obtain that 

. From , we 

have that  and 

2 2( ) [ ( ) ( )] ( )= − + łvar X r E e E e r var e ambdaλ λ 1( [ ( )]−, =% �X NB r p E eλ )

( ) [ ( ) 1]= −%E X r E eλ ( ) [ ( ) 1] ( )= −%var X r E e E eλ λ . Now,  
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Finally, (1) is a direct consequence of (2).  � 

Figure 1 shows some examples of probability mass functions of the NB–IG with 

different values of , r µ  and ψ . This seems to be unimodal and skewness to the left 

in all cases considered.  
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Figure 1. Some examples of probability mass functions of the Negative Binomial–Inverse 

Gaussian random variable with different values of , r ψ  and µ  

 

3. Estimation of parameters 

In this section different methods of estimation are given.  

1. Moments method 

Using expressions (7) and (8) together with the third moment about cero, which is 

given by  

 3 3 2 2 3 2 3[ ] ( 3 2 ) (3) (3 6 3 ) (2) ( 3 3 ) (1)= + + − + + + + + − 3,E X r r r M r r r M r r r M rλ λ λ  

we can estimate the three parameters of the model.  

Moment estimates may be computed by equating the sample and theoretical 
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moments. In this case, we will need the first, second and third order moments of the 

compound distribution, which are given by the expressions  
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By isolating the parameter ψ  from equations (18) and (19) we obtain  
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1
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respectively.  

By equalling (21) and (23) and after computation, we get µ   
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Substituting (21) or (22) and (23) in equation (20) we obtain an expression that only 

depends on the parameter  and can be solved numerically.  r

2. Maximum likelihood method 

Estimation of parameters in the Negative Binomial compound model in (5) can be 

also accomplished via maximum likelihood. Denoting the parameters of the IG 

distribution by 1 2(Θ = , )θ θ , the observed frequencies by 0 1=
,..., , =∑n

n ii
f f f f , and 

the corresponding probabilities from equation (5) by 0 , ..., np p . We have that the log–

likelihood function is given by  
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00
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The maximum likelihood estimator φ̂  of φ  is calculated using the following 

formulas:  
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Finally, in order to obtain the maximum likelihood estimates we have to solve the 
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systems of equations given by (24) and (25). For that, we need the following 

derivatives:  
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3. Zero proportion method 

Because moment or likelihood methods can be too complicated in order to estimate the parameters of 

the model there is another way to estimate the parameters when the distribution has special features 

high. Zero proportion method tends to work well only when the mode of the distribution is at zero and 

its proportion of zeros is relatively high (Alanko and Duffy (1996)). The marginal or compound 

distribution depends on three parameters and therefore we will need three equations in order to 

estimate the parameters. These three equations are given by the proportion of zeros, ,  and 0p ( )E X

2⎛
⎜
⎝

⎞
⎟
⎠

E X . By equating sample and theoretical moments of first and second order we get two 

equations. Finally, the third equation can be obtained from (?) when 0=X  and by equating sample 

proportion of zeros, . 0 ( 1)= −p M λ
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Thus, by equalling the first, second order moments of the compound distribution and the sample 

moments and the theoretical and sample proportion of zeros we obtain the equations (18), (19) and  
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Again, by isolating the parameter ψ  from equations (33) and (18) we obtain  
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respectively.  

By equating (34) and (35) and after computation, we obtain the parameter µ   
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Again, substituting (34) or (35) and (36) in equation (19) we obtain an expression that only depends 

on the parameter r  and can be solved numerically.  

4.  Applications  

In order to show how the  distribution works we have chosen two different examples. In 

the first example, data concerns the number of automobile liability policies in Switzerland for private 

cars (Klugman, et al. (1988), pp. 245). These data appears in Table 1 (first and second column).  

−NB IG
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Claims number Observed % Fitted(1) Fitted(2) Fitted(3) Fitted(4) 

0 103704 86.52 103711 103708 103704 103704 

1 14075 11.74 14051.1 14060.9 14071.5 14074.7 

2 1766 1.47 1789.67 1779.25 1773.31 1770.8 

3 255 0 251.32 254.2 253.26 251.95 

4 45 0 40.17 41.08 41.45 41.76 

5 6 0 7.31 7.32 7.61 7.98 

6 2 0 1.50 1.40 1.53 1.72 

More than 6 0 0 0 0 0 0 

Total 119853 100 119853 119853 119853 119853 

χ2   0.5516 0.1655 0.0877 0.0825 

d.f   2 2 2 2 

p-value   0.7604 0.9210 0.9573 0.9598 

Estimates   MM(1) MM(2) PM MLE 

r̂    2.085 28.12 12.5 3.7381 

ψ̂    0.2253 0.0059 0.0122 0.075 

µ̂    0.0709 0.0054 0.0148 0.0402 

 

 TABLE 1. Observed and fitted claims.  

 

We can observe that moment estimation (MM), zero proportion method (PM) and maximum 

likelihood method (MLE) provide an almost perfect fit. In the MM we have found two solutions  both 

providing a similar fit. Obviously, MLE gives us the best fit. Comparing this with the fits in Klugman 

et al. (1988), pp. 245, we can conclude that the −NB IG  distribution provides the best fit if we 

choose the 2χ –test as criteria of comparison. Finally, the log–likelihood is larger in the Binomial 

Negative–Inverse Gaussian distribution than in the Poisson and Negative Binomial and equal to the 

Poisson–Inverse Gaussian distribution. 
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Second data concerns again to the number of claims on automobile liability policies (Klugman et al. 

(1988), pp. 244). These data, which appear in Table 2 (first and second column) present more 

observations.  

Number of accidents Number of stretches % Fitted(1) Fitted(2) 

0 99 33.22 95.31 95.34 

1 65 21.81 76.08 76.40 

2 57 19.12 50.62 50.78 

3 35 11.74 31.44 31.44 

4 20 6.71 18.83 18.75 

5 10 3.35 11.03 10.93 

6 4 1.34 6.36 6.27 

7 0 0.00 3.63 3.55 

8 3 1.00 2.05 2.00 

9 4 1.34 1.15 1.11 

10 0 0.00 0.64 0.62 

11 1 0.00 0.36 0.34 

12 0 0.00 0.20 0.19 

Total 298 100 298 298 

χ2   4.0085 3.99546 

d.f   4 4 

p-value   0.4143 0.4160 

Estimates   MM MLE 

r̂    1.5 1.5 

ψ̂    2224.82 3059.91 

µ̂    0.760099 0.75091 

 

 

 TABLE 2.  Observed and fitted accidents.  
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Similar conclusions to the first data are now obtained. In this case, zero proportion method was not 

used because this is only a 33.22% of the total observations and this method obviously works 

wrongly. Comparing with the Poisson, Negative binomial and Polya–Acepli distributions we can 

conclude that only this latest distribution works better than the −NB IG  distribution proposed. 

1. An example computing automobile insurance premiums 

In automobile insurance markets, Negative binomial is preferred to the Poisson since it is 

overdispersed and actual experience shows that this is certainly observed in the field of automobile 

insurance. When the number of claims, given the parameter 0>λ ,is considered to be distributed 

according to ( ( ), / +NB r r r )λ  a natural prior for λ  is the Generalized Pareto ( GP ) distribution, 

which is conjugated with respect to that likelihood (Gómez and Vázquez, 2003). Because the  

distribution is overdispersed and in order to use other compound distribution than the  ,we 

have chosen the  for computing automobile insurance premiums. Although the  

distribution is not conjugate with the likelihood  we can see that the posterior distribution is 

easily obtained by dividing the mixing distribution by the marginal distribution as follows.  
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In Europe it is common to use bonus–malus in the automobile insurance premiums. In bonus–malus 

systems the premium depends only on the number of claims K  caused by the policyholder in the 

past, irrespective of their size. The methodology of a bonus–malus system consists of ensuring that the 

premium increases with the number of claims and decreases with the period  in which the 

policyholder does not make a claim. The premium for the first year is  a priori premium because there 

is no information concerning the risk. Under quadratic loss function, i.e. using net premium (Gómez 

and Vázquez (2003)) the premium can be computed as 

nt

( )( )fE δ λ . Here ( )δ λ  is the unknown risk 

premium because the parameter λ  is unknown. 

For the th year we take into account the information about the number of claims during the first  

years. Assuming the sequence of claims 

n n

1 2, , ..., nx x x  over  years (independent and identically 

distributed) and letting  

n

x
1=

= =∑n
ii

x nx , the Bayes or experience ratemaking premium can be 

obtained as (( | )( ) ( )fn E λ )δ δ λ, = xx . If the first premium is 100, we can construct a bonus–malus 

table of premiums depending on  and  with the expression  x n

 
( )
( )

( | )

( )

( ) ( )( ) 100 100
( ) (0 0)

,∗ ,
, = =

,
f n

f

E nn
E

λ

λ

δ λ δδ
δ λ δ

x xx .  
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k 

n 0 1 2 3 4 5 6 

0 100       

1 92.52 138.56 199.44 271.62 350.97 434.47 520.38 

2 86.47 126.82 179.62 242.12 310.96 383.59 458.47 

3 81.50 117.34 163.94 218.95 279.65 343.83 410.13 

4 77.26 109.59 151.19 200.26 254.46 311.90 371.32 

5 73.65 103.03 140.61 184.85 233.76 285.68 339.47 

6 70.46 97.43 131.67 171.91 216.43 263.75 312.87 

100 23.55 26.60 30.00 33.73 37.78 42.11 46.69 

1000 7.62 7.94 8.27 8.62 8.98 9.35 9.74 

10000 2.41 2.45 2.48 2.51 2.55 2.58 2.61 

 

 

 TABLE 3  BMP under negative binomial-Inverse Gaussian model.  

5. Conclusions and extensions 

There are several other applications to which this new model presented above may be appropriate. On 

one hand, the compound distribution can be extended to a multivariate version. The Negative 

Binomial- Inverse Gaussian distribution admits a multivariate version which is a natural version of the 

univariate case. Furthermore, when stationary and conditional independence is assumed on the 

parameter λ  the compound distribution can be computed and therefore, conditional predictions as 

well. On the other hand, we could have used the Generalized Inverse Gaussian as a mixing 

distribution. In this case four parameters should be estimated in the univariate case.   
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